

TomOpt: Differential Muon Tomography Optimisation

This repo provides a library for the differential optimisation of scattering muon tomography systems. For an overview, please read our first publication here [https://arxiv.org/abs/2309.14027].

As a disclaimer, this is a library designed to be extended by users for their specific tasks: e.g. passive volume definition, inference methods, and loss functions. Additionally, optimisation in TomOpt can be unstable, and requires careful tuning by users. This is to say that it is not a polished product for the general public, but rather fellow researchers in the field of optimisation and muon tomography.

If you are interested in using this library seriously, please contact us; we would love to here if you have a specific use-case you wish to work on.

Overview

The TomOpt library is designed to optimise the design of a muon tomography system. The detector system is defined by a set of parameters, which are used to define the geometry of the detectors. The optimisation is performed by minimising a loss function, which is defined by the user. The loss function is evaluated by simulating the muon scattering process through the detector system and passive volumes. The information recorded by the detectors is then passed through an inference system to arrive at a set of task-specific parameters. These are then compared to the ground truth, and the loss is calculated. The gradient of the loss with respect to the detector parameters is then used to update the detector parameters.

The TomOpt library is designed to be modular, and to allow for the easy addition of new inference systems, loss functions, and passive volume definitions. The library is also designed to be easily extensible to new optimisation algorithms, and to allow for the easy addition of new constraints on the detector parameters.

TomOpt consists of several submodules:

	benchmarks: and ongoing collection of concrete implementations and task-specific extensions that are used to test the library on real-world problems.

	inference: provides classes that infer muon-trajectories from detector data, and infer properties of passive volumes from muon-trajectories.

	muon: provides classes for handling muon batches, and generating muons from literature flux-distributions

	optimisation: provides classes for handling the optimisation of detector parameters, and an extensive callback system to modify the optimisation process.

	plotting: various plotting utilities for visualising the detector system, the optimisation process, and results

	volume: contains classes for defining passive volumes and detector systems

	core: core objects used by all parts of the code

	utils: various utilities used throughout the codebase

Package overview

	Installation

	Examples

	External repos

	Authors

Package documentation

	tomopt package

	tomopt.muon package

	tomopt.volume package

	tomopt.inference package

	tomopt.optimisation package

	tomopt.plotting package

	tomopt.benchmarks package

Index

	Index

Installation

As a dependency

For dependency usage, tomopt can be installed via e.g.

pip install tomopt

For development

Check out the repo locally:

git clone git@github.com:GilesStrong/tomopt.git
cd tomopt

For development usage, we use ``poetry` <https://python-poetry.org/docs/#installing-with-the-official-installer>`_ to handle dependency installation.
Poetry can be installed via, e.g.

curl -sSL https://install.python-poetry.org | python3 -
poetry self update

and ensuring that poetry is available in your $PATH

TomOpt requires python >= 3.10. This can be installed via e.g. ``pyenv` <https://github.com/pyenv/pyenv>`_:

curl https://pyenv.run | bash
pyenv update
pyenv install 3.10
pyenv local 3.10

Install the dependencies:

poetry install
poetry self add poetry-plugin-export
poetry config warnings.export false
poetry run pre-commit install

Finally, make sure everything is working as expected by running the tests:

poetry run pytest tests

For those unfamiliar with poetry, basically just prepend commands with poetry run to use the stuff installed within the local environment, e.g. poetry run jupyter notebook to start a jupyter notebook server.. This local environment is basically a python virtual environment. To correctly set up the interpreter in your IDE, use poetry run which python to see the path to the correct python executable.

Examples

A few examples are included to introduce users and developers to the TomOpt library. These take the form of Jupyter notebooks. In examples/getting_started there are four ordered notebooks:

	00_Hello_World.ipynb aims to show the user the high-level classes in TomOpt and the general workflow.

	01_Indepth_tutorial_single_cycle.ipynb aims to show developers what is going on in a single update iteration.

	02_Indepth_tutotial_optimisation_and_callbacks.ipynb aims to show users and developers the workings of the callback system in TomOpt

	03_fixed_budget_mode.ipynb aims to show users and developers how to optimise such that the detector maintains a constant cost.

In examples/benchmarks there is a single notebook that covers the optimisation performed in our first publication, in which we optimised a detector to estimate the fill-height of a ladle furnace at a steel plant. As a disclaimer, this notebook may not fully reproduce our result, and is designed to be used in an interactive manner by experienced users.

Running notebooks in a remote cluster

If you want to run notebooks on a remote cluster but access them on the browser of your local machine, you need to forward the notebook server from the cluster to your local machine.

On the cluster, run:

poetry run jupyter notebook --no-browser --port=8889

On your local computer, you need to set up a forwarding that picks the flux of data from the cluster via a local port, and makes it available on another port as if the server was in the local machine:

ssh -N -f -L localhost:8888:localhost:8889 username@cluster_hostname

The layperson version of this command is: *take the flux of info from the port 8889 of cluster_hostname, logging in as username, get it inside the local machine via the port 8889, and make it available on the port 8888 as if the jupyter notebook server was running locally on the port 8888*

You can now point your browser to http://localhost:8888/tree (you will be asked to copy the server authentication token, which is the number that is shown by jupyter when you run the notebook on the server)

If there is an intermediate machine (e.g. a gateway) between the cluster and your local machine, you need to set up a similar port forwarding on the gateway machine. The crucial point is that the input port of each machine must be the output port of the machine before it in the chain. For instance:

jupyter notebook --no-browser --port=8889 # on the cluster
ssh -N -f -L localhost:8888:localhost:8889 username@cluster_hostname # on the gateway. Makes the notebook running on the cluster port 8889 available on the local port 8888
ssh -N -f -L localhost:8890:localhost:8888 username@gateway_hostname # on your local machine. Picks up the server available on 8888 of the gateway and makes it available on the local port 8890 (or any other number, e.g. 8888)

External repos

N.B. Most are not currently public

	tomo_deepinfer [https://github.com/GilesStrong/mode_muon_tomo_inference] (contact @GilesStrong for access) separately handles training and model definition of GNNs used for passive volume inference. Models are exported as JIT-traced scripts, and loaded here using the DeepVolumeInferer class. We still need to find a good way to host the trained models for easy download.

	mode_muon_tomography_scattering [https://github.com/GilesStrong/mode_muon_tomography_scattering] (contact @GilesStrong for access) separately handles conversion of PGeant model from root to HDF5, and Geant validation data from csv to HDF5.

	tomopt_sphinx_theme [https://github.com/GilesStrong/tomopt_sphinx_theme] public. Controls the appearance of the docs.

Authors

The TomOpt project, and its continued development and support, is the result of the combined work of many people, whose contributions are summarised in the author list [https://github.com/GilesStrong/tomopt/blob/main/AUTHORS.md]

tomopt package

Subpackages

	tomopt.benchmarks package

	tomopt.inference package

	tomopt.muon package

	tomopt.optimisation package

	tomopt.plotting package

	tomopt.volume package

Submodules

tomopt.core module

tomopt.utils module

	
tomopt.utils.class_to_x0preds(array, id2x0)

	Converts array of classes to X0 predictions using the map defined in id2x0

	Parameters:

	
	array (ndarray) – array of integer class IDs

	id2x0 (Dict[int, float]) – map of class IDs to X0 float values

	Return type:

	ndarray

	Returns:

	New array of X0 values

	
tomopt.utils.jacobian(y, x, create_graph=False, allow_unused=True)

	Computes the Jacobian (dy/dx) of y with respect to variables x. x and y can have multiple elements.
If y has multiple elements then computation is vectorised via vmap.

	Parameters:

	
	y (Tensor) – tensor to be differentiated

	x (Tensor) – dependent variables

	create_graph (bool) – If True, graph of the derivative will
be constructed, allowing to compute higher order derivative products.
Default: False.

	allow_unused (bool) – If False, specifying inputs that were not
used when computing outputs (and therefore their grad is always

	Return type:

	Tensor

	Returns:

	dy/dx tensor of shape y.shape+x.shape

	
tomopt.utils.x0_from_mixture(x0s, densities, weight_fracs=None, volume_fracs=None)

	Computes the X0 of a mixture of (non-chemically bonded) materials,
Based on https://cds.cern.ch/record/1279627/files/PH-EP-Tech-Note-2010-013.pdf

	Parameters:

	
	x0s (Union[ndarray, List[float]]) – X0 values of the materials in the mixture in metres

	densities (Union[ndarray, List[float]]) – densities of the materials in the mixture kg/m^3

	weight_fracs (Union[ndarray, List[float], None]) – the relative amounts of each material by weight

	volume_fracs (Union[ndarray, List[float], None]) – the relative amounts of each material by volume

	Returns:

	The X0 of the defined mixture in metres, “density”: The density in kg/m^3 of the defined mixture}

	Return type:

	{“X0”

	
tomopt.utils.x0targs_to_classtargs(array, x02id)

	Converts array of float X0 targets to integer class IDs using the map defined in x02id.

Warning

To account for floating point precision, X0 values are mapped to the integer class IDs which are closest to X0 keys defined in the map.
This means that the method cannot detect missing X0 values from x02id;
X0s will always be mapped to a class ID, even if the material isn’t defined in the map

Warning

The input array is modified in-place

	Parameters:

	
	array (ndarray) – array of X0 values

	x02id (Dict[float, int]) – map of X0 float values to class IDs

	Return type:

	ndarray

	Returns:

	Array of integer class IDs

tomopt.version module

tomopt.benchmarks package

Subpackages

	tomopt.benchmarks.ladle_furnace package

	tomopt.benchmarks.small_walls package

	tomopt.benchmarks.u_lorry package

tomopt.benchmarks.ladle_furnace package

Submodules

tomopt.benchmarks.ladle_furnace.data module

	
class tomopt.benchmarks.ladle_furnace.data.LadleFurnacePassiveGenerator(volume, x0_furnace=0.01782, fill_material='hot liquid steel', slag_material='slag')

	Bases: AbsPassiveGenerator

Research tested only: no unit tests

tomopt.benchmarks.ladle_furnace.inference module

	
class tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer(partial_x0_inferrer, volume, pipeline=['remove_ladle', 'avg_3d', 'avg_layers', 'avg_1d', 'ridge_1d_0', 'negative', 'max_div_min'], add_batch_dim=True, output_probs=True)

	Bases: AbsIntClassifierFromX0

Research tested only: no unit tests

	
static avg_1d(x)

	
	Return type:

	Tensor

	
static avg_3d(x)

	
	Return type:

	Tensor

	
static avg_layers(x)

	
	Return type:

	Tensor

	
static edge_det(x, kernel)

	
	Return type:

	Tensor

	
static gauss_1d(x)

	
	Return type:

	Tensor

	
static gauss_3d(x)

	
	Return type:

	Tensor

	
laplacian_1d(x)

	
	Return type:

	Tensor

	
static max_div_min(x)

	
	Return type:

	Tensor

	
static max_sub_min(x)

	
	Return type:

	Tensor

	
static negative(x)

	
	Return type:

	Tensor

	
prewit_1d(x)

	
	Return type:

	Tensor

	
static remove_ladle(x)

	Assumes ladle is 1 voxel thick

	Return type:

	Tensor

	
ridge_1d_0(x)

	
	Return type:

	Tensor

	
ridge_1d_2(x)

	
	Return type:

	Tensor

	
ridge_1d_4(x)

	
	Return type:

	Tensor

	
ridge_1d_8(x)

	
	Return type:

	Tensor

	
x02probs(vox_preds)

	Inheriting classes must override this method to convert voxelwise X0 predictions to class probabilities

	Parameters:

	vox_preds (Tensor) – (z,x,y) tensor of voxelwise X0 predictions

	Return type:

	Tensor

	Returns:

	(*) tensor of class probabilities

	
class tomopt.benchmarks.ladle_furnace.inference.LinearCorrectionCallback(partial_opt, init_weight=1.0, init_bias=0.0)

	Bases: Callback

Research tested only: no unit tests

	
on_backwards_end()

	Runs when the loss for a batch of passive volumes has been backpropagated, but parameters have not yet been updated.

	Return type:

	None

	
on_train_begin()

	Runs when detector fitting begins.

	Return type:

	None

	
on_volume_batch_begin()

	Runs when a new batch of passive volume layouts is begins.

	Return type:

	None

	
on_x0_pred_end()

	Runs after the volume inferrer has made its final prediction, but before the loss is computed.

	Return type:

	None

	
class tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer(volume, smooth=0.1)

	Bases: AbsVolumeInferrer

Research tested only: no unit tests

Computes fill heigh based on weighted average of z of POCAs

	
compute_efficiency(scatters)

	Computes the per-muon efficiency, given the individual muon hit efficiencies,
as the probability of at least two hits above and below the passive volume.

	Parameters:

	scatters (ScatterBatch) – scatter batch containing muons whose efficiency should be computed

	Return type:

	Tensor

	Returns:

	(muons) tensor of muon efficiencies

	
get_prediction()

	Computes the predicted fill level via a weighted average of POCA locations.

	Returns:

	fill-height prediction [m]

	Return type:

	pred

	
property muon_efficiency: Tensor

	Returns:
(muons,1) tensor of the efficiencies of the muons

	
property muon_poca_xyz: Tensor

	Returns:
(muons,xyz) tensor of PoCA locations

	
property muon_poca_xyz_unc: Tensor

	Returns:
(muons,xyz) tensor of PoCA location uncertainties

	
property n_mu: int

	Returns:
Total number muons included in the inference

	
property pred_height: Tensor

	Returns:
(h) tensor of fill-height prediction

	
property smooth: Tensor

	

tomopt.benchmarks.ladle_furnace.loss module

	
class tomopt.benchmarks.ladle_furnace.loss.LadleFurnaceIntClassLoss(*, pred_int_start=0, use_mse, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: VolumeIntClassLoss

Research tested only: no unit tests

	
class tomopt.benchmarks.ladle_furnace.loss.SpreadRangeLoss

	Bases: Callback

Research tested only: no unit tests

	
on_volume_batch_begin()

	Runs when a new batch of passive volume layouts is begins.

	Return type:

	None

	
on_volume_batch_end()

	Runs when a batch of passive volume layouts is ends.

	Return type:

	None

	
on_x0_pred_end()

	Runs after the volume inferrer has made its final prediction, but before the loss is computed.

	Return type:

	None

tomopt.benchmarks.ladle_furnace.plotting module

	
tomopt.benchmarks.ladle_furnace.plotting.compare_init_optimised_2(df_start, df_opt_2, NAME)

	
	Return type:

	None

	
tomopt.benchmarks.ladle_furnace.plotting.compare_init_to_optimised(df_start, df_opt, NAME)

	
	Return type:

	None

	
tomopt.benchmarks.ladle_furnace.plotting.compare_optimised_to_baselines(df_bl_1, df_bl_2, df_opt_2, NAME)

	
	Return type:

	None

	
tomopt.benchmarks.ladle_furnace.plotting.compare_raw_init_to_bias_corrected_init(df_start, NAME)

	
	Return type:

	None

tomopt.benchmarks.ladle_furnace.volume module

	
tomopt.benchmarks.ladle_furnace.volume.get_baseline_detector_1(*, res=10000.0, eff=0.9, span=0.8, device=device(type='cpu'))

	
	Return type:

	ModuleList

	
tomopt.benchmarks.ladle_furnace.volume.get_baseline_detector_2(*, res=10000.0, eff=0.9, span=0.8, device=device(type='cpu'))

	
	Return type:

	ModuleList

	
tomopt.benchmarks.ladle_furnace.volume.get_initial_detector(*, res=10000.0, eff=0.9, span=0.8, device=device(type='cpu'))

	
	Return type:

	ModuleList

tomopt.benchmarks.small_walls package

Submodules

tomopt.benchmarks.small_walls.data module

	
class tomopt.benchmarks.small_walls.data.SmallWallsPassiveGenerator(volume, x0_soil=0.2624248696430881, x0_wall=0.08022522418503258, stop_k=10, turn_k=5, min_length=4, min_height=4)

	Bases: AbsPassiveGenerator

tomopt.benchmarks.small_walls.volume module

	
tomopt.benchmarks.small_walls.volume.get_small_walls_volume(size=1, passive_lwh=tensor([10., 10., 10.]), span=4.0, res=10000.0, eff=1.0, det_height=1.0, device=device(type='cpu'))

	
	Return type:

	Volume

	
tomopt.benchmarks.small_walls.volume.get_small_walls_volume_wrapper(size=1, passive_lwh=tensor([10., 10., 10.]), span=4.0, res=10000.0, eff=1.0, det_height=1.0, device=device(type='cpu'))

	
	Return type:

	PanelVolumeWrapper

tomopt.benchmarks.u_lorry package

Submodules

tomopt.benchmarks.u_lorry.data module

	
class tomopt.benchmarks.u_lorry.data.ULorryPassiveGenerator(volume, u_volume, u_prob=0.5, fill_frac=0.8, x0_lorry=0.01757, bkg_materials=['air', 'iron'])

	Bases: AbsPassiveGenerator

Research tested only: no unit tests

tomopt.inference package

Submodules

tomopt.inference.scattering module

	
class tomopt.inference.scattering.GenScatterBatch(mu, volume)

	Bases: ScatterBatch

Class for computing scattering information from the true hits via incoming/outgoing trajectory fitting.

Warning

This class is intended for diagnostic purposes only.
The tracks and scatter variables carry no gradient w.r.t. detector parameters (except z position).

Linear fits are performed separately to all hits associated with layer groups, as indicated by the pos attribute of the layers which recorded hits.
Currently, the inference methods expect detectors above the passive layer to have pos==’above’,
and those below the passive volume to have pos==’below’.
Trajectory fitting is performed using an analytic likelihood minimisation, but no uncertainties on the hits are considered.

Important

The current separation of hits into above and below groups does not allow for e.g. a third set of detectors,
since this split is based on the value of the n_hits_above attribute.

One instance of this class should created for each MuonBatch.
As part of the initialisation, muons will be filtered using _filter_scatters()
in order to avoid NaN/Inf values. This results in direct, in-place changes to the MuonBatch.

Since many variables of the scattering can be inferred, but not all are required for further inference downstream,
variables, and their uncertainties, are computed on a lazy basis, with memoisation: the values are only computed on the first request (if at all)
and then stored in case of further requests.

The dtheta, dphi, and total scattering variables are computed under the assumption of small angular scatterings.
An assumption is necessary here, since there is a loss of information in the when the muons undergo scattering in theta and phi:
since theta is [0,pi] a negative scattering in theta will always results in a positive theta, but phi can become phi+pi.
When inferring the angular scattering, one cannot precisely tell whether instead a large scattering in phi occurred.
The total scattering (total_scatter) is the quadrature sum of dtheta and dphi, and all three are computed under both hypotheses.
The final values of these are chosen using the hypothesis which minimises the total amount of scattering.
This assumption has been tested and found to be good.

	Parameters:

	
	mu (MuonBatch) – muons with hits to infer on

	volume (Volume) – volume through which the muons travelled

	
class tomopt.inference.scattering.ScatterBatch(mu, volume)

	Bases: object

Class for computing scattering information from the hits via incoming/outgoing trajectory fitting.

Linear fits are performed separately to all hits associated with layer groups, as indicated by the pos attribute of the layers which recorded hits.
Currently, the inference methods expect detectors above the passive layer to have pos==’above’,
and those below the passive volume to have pos==’below’.
Trajectory fitting is performed using an analytic likelihood minimisation, which considers uncertainties and efficiencies on the hits in x and y.

Important

The current separation of hits into above and below groups does not allow for e.g. a third set of detectors,
since this split is based on the value of the n_hits_above attribute.

One instance of this class should created for each MuonBatch.
As part of the initialisation, muons will be filtered using _filter_scatters()
in order to avoid NaN/Inf gradients or values. This results in direct, in-place changes to the MuonBatch.

Since many variables of the scattering can be inferred, but not all are required for further inference downstream,
variables, and their uncertainties, are computed on a lazy basis, with memoisation: the values are only computed on the first request (if at all)
and then stored in case of further requests.

The dtheta, dphi, and total scattering variables are computed under the assumption of small angular scatterings.
An assumption is necessary here, since there is a loss of information in the when the muons undergo scattering in theta and phi:
since theta is [0,pi] a negative scattering in theta will always results in a positive theta, but phi can become phi+pi.
When inferring the angular scattering, one cannot precisely tell whether instead a large scattering in phi occurred.
The total scattering (total_scatter) is the quadrature sum of dtheta and dphi, and all three are computed under both hypotheses.
The final values of these are chosen using the hypothesis which minimises the total amount of scattering.
This assumption has been tested and found to be good.

	Parameters:

	
	mu (MuonBatch) – muons with hits to infer on

	volume (Volume) – volume through which the muons travelled

	
property above_gen_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of true hits in the “above” detectors

	
property above_hit_effs: Tensor | None

	Returns:
(muons,hits,effs) tensor of hit efficiencies in the “above” detectors

	
property above_hit_uncs: Tensor | None

	Returns:
(muons,hits,xyz) tensor of uncertainties on hits in the “above” detectors

	
property above_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of recorded hits in the “above” detectors

	
property below_gen_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of true hits in the “below” detectors

	
property below_hit_effs: Tensor | None

	Returns:
(muons,hits,eff) tensor of hit efficiencies in the “below” detectors

	
property below_hit_uncs: Tensor | None

	Returns:
(muons,hits,xyz) tensor of uncertainties on hits in the “below” detectors

	
property below_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of recorded hits in the “below” detectors

	
property dphi: Tensor

	Returns:
(muons,1) delta phi between incoming & outgoing muons

	
property dphi_unc: Tensor

	Returns:
(muons,1) uncertainty on dphi

	
property dtheta: Tensor

	Returns:
(muons,1) delta theta between incoming & outgoing muons

	
property dtheta_unc: Tensor

	Returns:
(muons,1) uncertainty on dtheta

	
property dtheta_xy: Tensor

	Returns:
(muons,xy) delta theta_xy between incoming & outgoing muons in the zx and zy planes

	
property dtheta_xy_unc: Tensor

	Returns:
(muons,xy) uncertainty on dtheta_xy

	
property dxy: Tensor

	Returns:
(muons,xy) distances in x & y from PoCA to incoming|outgoing muons

	
property dxy_unc: Tensor

	Returns:
(muons,xy) uncertainty on dxy

	
property gen_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of true hits

	
static get_muon_trajectory(hits, uncs, lw)

	Fits a linear trajectory to a group of hits, whilst considering their uncertainties on their xy positions.
No uncertainty is considered for z positions of hits.
The fit is performed via an analytical likelihood-maximisation.

Important

Muons with <2 hits have NaN trajectory

	Parameters:

	
	hits (Tensor) – (muons,hits,xyz) tensor of hit positions

	uncs (Tensor) – (muons,hits,(unc x,unc y,0)) tensor of hit uncertainties

	lw (Tensor) – length and width of the passive layers of the volume

	Returns:

	(muons,xyz) fitted-vector directions
start: (muons,xyz) initial point of fitted-vector

	Return type:

	vec

	
get_scatter_mask()

	
	Return type:

	Tensor

	Returns:

	(muons) Boolean tensor where True indicates that the PoCA of the muon is located within the passive volume

	
property hit_effs: Tensor | None

	Returns:
(muons,hits,eff) tensor of hit efficiencies

	
property hit_uncs: Tensor | None

	Returns:
(muons,hits,xyz) tensor of uncertainties on hits

	
property hits: Dict[str, Dict[str, Tensor]]

	Returns:
Dictionary of hits, as returned by get_hits()

	
property n_hits_above: int | None

	Returns:
Number of hits per muon in the “above” detectors

	
property n_hits_below: int | None

	Returns:
Number of hits per muon in the “below” detectors

	
property phi_in: Tensor

	Returns:
(muons,1) phi of incoming muons

	
property phi_in_unc: Tensor

	Returns:
(muons,1) uncertainty on phi_in

	
property phi_out: Tensor

	Returns:
(muons,1) phi of outgoing muons

	
property phi_out_unc: Tensor

	Returns:
(muons,1) uncertainty on phi_out

	
plot_scatter(idx, savename=None)

	Plots representation of hits and fitted trajectories for a single muon.

	Parameters:

	
	idx (int) – index of muon to plot

	savename (Optional[Path]) – optional path to save figure to

	Return type:

	None

	
property poca_xyz: Tensor

	Returns:
(muons,xyz) xyz location of PoCA

	
property poca_xyz_unc: Tensor

	Returns:
(muons,xyz) uncertainty on poca_xyz

	
property reco_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of recorded hits

	
property theta_in: Tensor

	Returns:
(muons,1) theta of incoming muons

	
property theta_in_unc: Tensor

	Returns:
(muons,1) uncertainty on theta_in

	
property theta_msc: Tensor

	Returns:
(muons,1) theta_msc; the total amount of angular scattering

	
property theta_msc_unc: Tensor

	Returns:
(muons,1) uncertainty on total_scatter

	
property theta_out: Tensor

	Returns:
(muons,1) theta of outgoing muons

	
property theta_out_unc: Tensor

	Returns:
(muons,1) uncertainty on theta_out

	
property theta_xy_in: Tensor

	Returns:
(muons,xy) decomposed theta and phi of incoming muons in the zx and zy planes

	
property theta_xy_in_unc: Tensor

	Returns:
(muons,xy) uncertainty on theta_xy_in

	
property theta_xy_out: Tensor

	Returns:
(muons,xy) decomposed theta and phi of outgoing muons in the zx and zy planes

	
property theta_xy_out_unc: Tensor

	Returns:
(muons,xy) uncertainty on theta_xy_out

	
property total_scatter: Tensor

	Returns:
(muons,1) theta_msc; the total amount of angular scattering

	
property total_scatter_unc: Tensor

	Returns:
(muons,1) uncertainty on total_scatter

	
property track_in: Tensor | None

	Returns:
(muons,xyz) incoming xyz vector

	
property track_out: Tensor | None

	Returns:
(muons,xyz) outgoing xyz vector

	
property track_start_in: Tensor | None

	Returns:
(muons,xyz) initial point of incoming xyz vector

	
property track_start_out: Tensor | None

	Returns:
(muons,xyz) initial point of outgoing xyz vector

	
property xyz_in: Tensor

	Returns:
(muons,xyz) inferred xy position of muon at the z-level of the top of the passive volume

	
property xyz_in_unc: Tensor

	Returns:
(muons,xyz) uncertainty on xyz_in

	
property xyz_out: Tensor

	Returns:
(muons,xyz) inferred xy position of muon at the z-level of the bottom of the passive volume

	
property xyz_out_unc: Tensor

	Returns:
(muons,xyz) uncertainty on xyz_out

tomopt.inference.volume module

	
class tomopt.inference.volume.AbsIntClassifierFromX0(partial_x0_inferrer, volume, output_probs=True, class2float=None)

	Bases: AbsVolumeInferrer

Abstract base class for inferring integer targets through multiclass classification from voxelwise X0 predictions.
Inheriting classes must provide a way to convert voxelwise X0s into class probabilities of the required dimension.
Requires a basic inferrer for providing the voxelwise X0 predictions.
Optionally, the predictions can be returns as the raw class predictions, or the most probable class.
In case of the latter, this class can be optionally be converted to a float value via a user-provided processing function.

	Parameters:

	
	partial_x0_inferrer (Type[AbsX0Inferrer]) – (partial) class to instatiate to provide the voxelwise X0 predictions

	volume (Volume) – volume through which the muons will be passed

	output_probs (bool) – if True, will return the per-class probabilites, otherwise will return the argmax of the probabilities, over the last dimension

	class2float (Optional[Callable[[Tensor, Volume], Tensor]]) – optional function to convert class indices to a floating value

	
add_scatters(scatters)

	Appends a new set of muon scatter vairables.
When get_prediction() is called, the prediction will be based on all
ScatterBatch s added up to that point

	Return type:

	None

	
compute_efficiency(scatters)

	Compuates the per-muon efficiency according to the method implemented by the X0 inferrer.

	Parameters:

	scatters (ScatterBatch) – scatter batch containing muons whose efficiency should be computed

	Return type:

	Tensor

	Returns:

	(muons) tensor of muon efficiencies

	
get_prediction()

	Computes the predicions for the volume.
If class probabilities were requested during initialisation, then these will be returned.
Otherwise the most probable class will be returned, and this will be converted to a float value if class2float is not None.

	Returns:

	(*) volume prediction

	Return type:

	pred

	
abstract x02probs(vox_preds)

	Inheriting classes must override this method to convert voxelwise X0 predictions to class probabilities

	Parameters:

	vox_preds (Tensor) – (z,x,y) tensor of voxelwise X0 predictions

	Return type:

	Tensor

	Returns:

	(*) tensor of class probabilities

	
class tomopt.inference.volume.AbsVolumeInferrer(volume)

	Bases: object

Abstract base class for volume inference.

Inheriting classes are expected to be fed multiple ScatterBatch s,
via add_scatters(), for a single Volume
and return a volume prediction based on all of the muon batches when get_prediction() is called.

	Parameters:

	volume (Volume) – volume through which the muons will be passed

	
add_scatters(scatters)

	Appends a new set of muon scatter variables.
When get_prediction() is called, the prediction will be based on all
ScatterBatch s added up to that point

	Return type:

	None

	
abstract compute_efficiency(scatters)

	Inheriting classes must override this method to provide a computation of the per-muon efficiency, given the individual muon hit efficiencies.

	Return type:

	Tensor

	
abstract get_prediction()

	Inheriting classes must override this method to provide a prediction computed using the added scatter batches.
E.g. the sum of muon efficiencies.

	Return type:

	Optional[Tensor]

	
class tomopt.inference.volume.AbsX0Inferrer(volume)

	Bases: AbsVolumeInferrer

Abstract base class for inferring the X0 of every voxel in the passive volume.

The inference is based on the PoCA approach of assigning the entirety of the muon scattering to a single point,
and the X0 computation is based on inversion of the PDG scattering model described in
https://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf.

	Once all scatter batches have been added, the inference proceeds thusly:
	
	For each muon i, a probability p_ij, is computed according to the probability that the PoCA was located in voxel j.

	These probabilities are computed by integrating over the voxel the PDF of 3 uncorrelated Gaussians centred on the PoCA, with scales equal the uncertainty on the PoCA position in x,y,z.

	p_ij is multiplied by muon efficiency e_i to compute a muon/voxel weight w_ij.

	Inversion of the PDG model gives: \(X_0 = \left(\frac{0.0136}{p^{\mathrm{rms}}}\right)^2\frac{\delta z}{\cos\left(\bar{\theta}^{\mathrm{rms}}\right)}\frac{2}{\theta^{\mathrm{rms}}_{\mathrm{tot.}}}\)

	
	In order to account for the muon weights and compute different X0s for the voxels whilst using the whole muon population:
	
	Weighted RMSs are computed for each of the scattering terms in the right-hand side of the equation.

	In addition to the muon weight w_ij, the variances of the squared values of the scattering variables is used to divide w_ij.

	The result is a set of X0 predictions X0_j.

Important

Inversion of the PDG model does NOT account for the natural log term.

Important

To simplify the computation code, this class relies heavily on lazy computation and memoisation; be careful if calling private methods manually.

	Parameters:

	volume (Volume) – volume through which the muons will be passed

	
get_prediction()

	Computes the predicted X0 per voxel as a (z,x,y) tensor via PDG scatter-model inversion for the provided scatter batches.

	Returns:

	(z,x,y) voxelwise X0 predictions

	Return type:

	pred

	
property muon_efficiency: Tensor

	Returns:
(muons,1) tensor of the efficiencies of the muons

	
property muon_mom: Tensor

	Returns:
(muons,1) tensor of the momenta of the muons

	
property muon_mom_unc: Tensor

	Returns:
(muons,1) tensor of the uncertainty on the momenta of the muons

	
property muon_poca_xyz: Tensor

	Returns:
(muons,xyz) tensor of PoCA locations

	
property muon_poca_xyz_unc: Tensor

	Returns:
(muons,xyz) tensor of PoCA location uncertainties

	
property muon_probs_per_voxel_zxy: Tensor

	
Warning

Integration tested only

TODO: Don’t assume that poca_xyz uncertainties are uncorrelated
TODO: Improve efficiency: currently CDFs are computed multiple times at the same points; could precompute x,y,z probs once, and combine in triples
:returns: (muons,z,x,y) tensor of probabilities that the muons’ PoCAs were located in the given voxels.

	
property muon_theta_in: Tensor

	Returns:
(muons,1) tensor of the thetas of the incoming muons

	
property muon_theta_in_unc: Tensor

	Returns:
(muons,1) tensor of the uncertainty on the theta of the incoming muons

	
property muon_theta_out: Tensor

	Returns:
(muons,1) tensor of the thetas of the outgoing muons

	
property muon_theta_out_unc: Tensor

	Returns:
(muons,1) tensor of the uncertainty on the theta of the outgoing muons

	
property muon_total_scatter: Tensor

	Returns:
(muons,1) tensor of total angular scatterings

	
property muon_total_scatter_unc: Tensor

	Returns:
(muons,1) tensor of uncertainties on the total angular scatterings

	
property n_mu: int

	Returns:
Total number muons included in the inference

	
property vox_zxy_x0_pred_uncs: Tensor

	
Warning

Not recommended for use: long calculation; not unit-tested

	Returns:

	(z,x,y) tensor of uncertainties on voxelwise X0s

	
property vox_zxy_x0_preds: Tensor

	Returns:
(z,x,y) tensor of voxelwise X0 predictions

	
static x0_from_scatters(deltaz, total_scatter, theta_in, theta_out, mom)

	Computes the X0 of a voxel, by inverting the PDG scattering model in terms of the scattering variables

Important

Inversion of the PDG model does NOT account for the natural log term.

	Parameters:

	
	deltaz (float) – height of the voxels

	total_scatter (Tensor) – (voxels,1) tensor of the (RMS of the) total angular scattering of the muon(s)

	theta_in (Tensor) – (voxels,1) tensor of the (RMS of the) theta of the muon(s), as inferred using the incoming trajectory/ies

	theta_out (Tensor) – (voxels,1) tensor of the (RMS of the) theta of the muon(s), as inferred using the outgoing trajectory/ies

	mom (Tensor) – (voxels,1) tensor of the (RMS of the) momentum/a of the muon(s)

	Return type:

	Tensor

	Returns:

	(voxels,1) estimated X0 in metres

	
class tomopt.inference.volume.DenseBlockClassifierFromX0s(n_block_voxels, partial_x0_inferrer, volume, use_avgpool=True, cut_coef=10000.0, ratio_offset=-1.0, ratio_coef=1.0)

	Bases: AbsVolumeInferrer

Class for inferreing the presence of a small amount of denser material in the passive volume.

Transforms voxel-wise X0 preds into binary classification statistic under the hypothesis of a small, dense block against a light-weight background.
This test statistic, s is computed as:

\[r = 2 \frac{\bar{X0}_{0,\mathrm{bkg}} - \bar{X0}_{0,\mathrm{blk}}}{\bar{X0}_{0,\mathrm{bkg}} + \bar{X0}_{0,\mathrm{blk}}}
s = \sigma\!(a(r+b))\]

where \(\bar{X0}_{0,\mathrm{blk}}\) is the mean X0 of the N lowest X0 voxels,
and \(\bar{X0}_{0,\mathrm{bkg}}\) is the mean X0 of the remaining voxels.
a and b are rescaling coefficients and offsets.

This results in a differentiable value constrained beween 0 and 1, with values near 0 indicating that no relatively dense material is present,
and values nearer 1 indicating that it is present.
In case it is expected that the dense material forms a contiguous block, the voxelwise X0s can be blurred via a stride-1 kernel-size-3 average pooling.

In actuality, the “cut” on X0s into background and block is implemented as a sigmoid weight, centred at the necessary kth value of the X0.
This means that the test statisitc is also differentiable w.r.t. the cut.

	Parameters:

	
	n_block_voxels (int) – number of voxels expected to be occupied by the dense material, if present

	partial_x0_inferrer (Type[AbsX0Inferrer]) – (partial) class to instatiate to provide the voxelwise X0 predictions

	volume (Volume) – volume through which the muons will be passed

	use_avgpool (bool) – wether to blur voxelwise X0 predicitons with a stride-1 kernel-size-3 average pooling
useful when the dense material is expected to form a contiguous block

	cut_coef (float) – the “sharpness” of the sigmoid weight that splits voxels into block and background.
Higher values results in a sharper cut.

	ratio_offset (float) – additive constant for the X0 ratio

	ratio_coef (float) – multiplicative coefficient for the offset X0 ratio

	
add_scatters(scatters)

	Appends a new set of muon scatter vairables.
When get_prediction() is called, the prediction will be based on all
ScatterBatch s added up to that point

	Return type:

	None

	
compute_efficiency(scatters)

	Compuates the per-muon efficiency according to the method implemented by the X0 inferrer.

	Parameters:

	scatters (ScatterBatch) – scatter batch containing muons whose efficiency should be computed

	Return type:

	Tensor

	Returns:

	(muons) tensor of muon efficiencies

	
get_prediction()

	Computes the test statistic for the volume, with values near 0 indicating that no relatively dense material is present,
and values nearer 1 indicating that it is present.

	Returns:

	(1,1,1) volume prediction

	Return type:

	pred

	
class tomopt.inference.volume.PanelX0Inferrer(volume)

	Bases: AbsX0Inferrer

Class for inferring the X0 of every voxel in the passive volume using hits recorded by PanelDetectorLayer s.

The inference is based on the PoCA approach of assigning the entirety of the muon scattering to a single point,
and the X0 computation is based on inversion of the PDG scattering model described in
https://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf.

	Once all scatter batches have been added, the inference proceeds thusly:
	
	For each muon i, a probability p_ij, is computed according to the probability that the PoCA was located in voxel j.

	These probabilities are computed by integrating over the voxel the PDF of 3 uncorrelated Gaussians centred on the PoCA, with scales equal the uncertainty on the PoCA position in x,y,z.

	p_ij is multiplied by muon efficiency e_i to compute a muon/voxel weight w_ij.

	Inversion of the PDG model gives: \(X_0 = \left(\frac{0.0136}{p^{\mathrm{rms}}}\right)^2\frac{\delta z}{\cos\left(\bar{\theta}^{\mathrm{rms}}\right)}\frac{2}{\theta^{\mathrm{rms}}_{\mathrm{tot.}}}\)

	
	In order to account for the muon weights and compute different X0s for the voxels whilst using the whole muon population:
	
	Weighted RMSs are computed for each of the scattering terms in the right-hand side of the equation.

	In addition to the muon weight w_ij, the variances of the squared values of the scattering variables is used to divide w_ij.

	The result is a set of X0 predictions X0_j.

Important

Inversion of the PDG model does NOT account for the natural log term.

Important

To simplify the computation code, this class relies heavily on lazy computation and memoisation; be careful if calling private methods manually.

	Parameters:

	volume (Volume) – volume through which the muons will be passed

TODO: refactor this to be provided to volume inference as a callable

	
compute_efficiency(scatters)

	Computes the per-muon efficiency, given the individual muon hit efficiencies,
as the probability of at least two hits above and below the passive volume.

	Parameters:

	scatters (ScatterBatch) – scatter batch containing muons whose efficiency should be computed

	Return type:

	Tensor

	Returns:

	(muons) tensor of muon efficiencies

tomopt.muon package

Submodules

tomopt.muon.generation module

	
class tomopt.muon.generation.AbsMuonGenerator(x_range, y_range, fixed_mom=5.0, energy_range=(0.5, 500), theta_range=(0, 1.2217304763960306))

	Bases: object

Abstract generator base class implementing core functionality.
Inheriting classes should override the flux method.

Once initialised, the object can be called, or it’s generate_set method called, to generate a set of initial muon kinematics.
Each muon will have a starting x and y position sampled uniformly within a defined region.
Theta and momentum will be defined by sampling the defined flux model.

	Parameters:

	
	x_range (Tuple[float, float]) – range in metres of the absolute initial x-position in the volume reference frame over which muons can be generated

	y_range (Tuple[float, float]) – range in metres of the absolute initial y-position in the volume reference frame over which muons can be generated

	fixed_mom (Optional[float]) – if not None, will only generate muons with the specified momentum in GeV

	energy_range (Tuple[float, float]) – if fixed_mom is None, muons will have initial momentum sampled according to the flux model in the specified range in GeV

	theta_range (Tuple[float, float]) – muons will have initial theta sampled according to the flux model in the specified range in radians

	
abstract flux(energy, theta)

	Inheriting classes should override this to implement their flux model for the supplied pairs of energies and thetas

	Parameters:

	
	energy (Union[float, ndarray]) – energy values at which to compute the flux, in GeV

	theta (Union[float, ndarray]) – theta values at which to compute the flux, in radians

	Return type:

	Union[float, ndarray]

	Returns:

	muon flux for every energy & theta pair

	
classmethod from_volume(volume, min_angle=0.2617993877991494, fixed_mom=5.0, energy_range=(0.5, 500), theta_range=(0, 1.2217304763960306))

	Class method to initialise x and y ranges of muon generation from the passive volume.
Heuristically computes x,y generation range as (0-d,x+d), (0-d,y+d).
Where d is such that a muon generated at (0-d,1) will only hit the last layer of the passive volume if it’s initial angle is at least min_angle.
This balances a trade-off between generation efficiency and generator realism.

	Parameters:

	
	volume (Volume) – Volume through which the muons will pass

	min_angle (float) – the minimum theta angle that a muon generated at the extreme x or y boundary would require to hit at least the last passive layer of the
passive volume, if it’s phi angle were to point directly towards the passive volume.

	fixed_mom (Optional[float]) – if not None, will only generate muons with the specified momentum in GeV

	energy_range (Tuple[float, float]) – if fixed_mom is None, muons will have initial momentum sampled according to the flux model in the specified range in GeV

	theta_range (Tuple[float, float]) – muons will have initial theta sampled according to the flux model in the specified range in radians

	Return type:

	AbsMuonGenerator

	
generate_set(n_muons)

	Generates a set of muons as a rank-2 tensor of shape (n_muons, 5), with initial kinematic variables [x, y, momentum, theta, phi].
Theta and, optionally, momentum are sampled from the flux model. x and y are sampled uniformly from the defined ranges.
Phi is sampled uniformly from [0,2pi].

	Parameters:

	n_muons (int) – number of muons to generate

	Return type:

	Tensor

	Returns:

	Rank-2 tensor of shape (n_muons, 5), with initial kinematic variables [x, y, momentum, theta, phi]

	
class tomopt.muon.generation.MuonGenerator2015(x_range, y_range, fixed_mom=5.0, energy_range=(0.5, 500), theta_range=(0, 1.2217304763960306))

	Bases: AbsMuonGenerator

Provides muon generator for sampling initial muon kinematics according to Guan et al. 2015 (arXiv:1509.06176).

Once initialised, the object can be called, or it’s generate_set method called, to generate a set of initial muon kinematics.
Each muon will have a starting x and y position sampled uniformly within a defined region.
Theta and momentum will be defined by sampling the defined flux model.

	Parameters:

	
	x_range (Tuple[float, float]) – range in metres of the absolute initial x-position in the volume reference frame over which muons can be generated

	y_range (Tuple[float, float]) – range in metres of the absolute initial y-position in the volume reference frame over which muons can be generated

	fixed_mom (Optional[float]) – if not None, will only generate muons with the specified momentum in GeV

	energy_range (Tuple[float, float]) – if fixed_mom is None, muons will have initial momentum sampled according to the flux model in the specified range in GeV

	theta_range (Tuple[float, float]) – muons will have initial theta sampled according to the flux model in the specified range in radians

	
P1 = 0.102573

	

	
P2 = -0.068287

	

	
P3 = 0.958633

	

	
P4 = 0.0407253

	

	
P5 = 0.817285

	

	
flux(energy, theta)

	Function returning modified Gaisser formula for cosmic muon flux given energy (float/np.array) and incidence angle (float/np.array)
Uses model defined in Guan et al. 2015 (arXiv:1509.06176)

	Parameters:

	
	energy (Union[float, ndarray]) – energy values at which to compute the flux, in GeV

	theta (Union[float, ndarray]) – theta values at which to compute the flux, in radians

	Return type:

	Union[float, ndarray]

	Returns:

	muon flux for every energy & theta pair

	
class tomopt.muon.generation.MuonGenerator2016(x_range, y_range, fixed_mom=5.0, energy_range=(0.5, 500), theta_range=(0, 1.2217304763960306))

	Bases: AbsMuonGenerator

Provides muon generator for sampling initial muon kinematics according to Shukla and Sanskrith 2018 arXiv:1606.06907

Once initialised, the object can be called, or it’s generate_set method called, to generate a set of initial muon kinematics.
Each muon will have a starting x and y position sampled uniformly within a defined region.
Theta and momentum will be defined by sampling the defined flux model.

	Parameters:

	
	x_range (Tuple[float, float]) – range in metres of the absolute initial x-position in the volume reference frame over which muons can be generated

	y_range (Tuple[float, float]) – range in metres of the absolute initial y-position in the volume reference frame over which muons can be generated

	fixed_mom (Optional[float]) – if not None, will only generate muons with the specified momentum in GeV

	energy_range (Tuple[float, float]) – if fixed_mom is None, muons will have initial momentum sampled according to the flux model in the specified range in GeV

	theta_range (Tuple[float, float]) – muons will have initial theta sampled according to the flux model in the specified range in radians

	
E_0 = 3.87

	

	
E_c = 0.5

	

	
I_0 = 88.0

	

	
N = 38.1938

	

	
Rod = 174.0

	

	
epinv = 0.00117096018735363

	

	
flux(energy, theta)

	Function returning modified Gaisser formula for cosmic muon flux given energy (float/np.array) and incidence angle (float/np.array)
Uses model defined in Shukla and Sanskrith 2018 arXiv:1606.06907

	Parameters:

	
	energy (Union[float, ndarray]) – energy values at which to compute the flux, in GeV

	theta (Union[float, ndarray]) – theta values at which to compute the flux, in radians

	Return type:

	Union[float, ndarray]

	Returns:

	muon flux for every energy & theta pair

	
n = 3

	

tomopt.muon.muon_batch module

	
class tomopt.muon.muon_batch.MuonBatch(xy_p_theta_phi, init_z, device=device(type='cpu'))

	Bases: object

Container class for a batch of many muons, defined by their position and kinematics.

	Each muon has its own:
	
	x, y, and z position in metres, which are absolute coordinates in the volume frame.

	theta, the angle in radians [0,pi) between the muon trajectory and the negative z-axis in the volume frame muons with a theta > pi/2 (i.e. travel upwards) may be removed automatically

	phi, the anticlockwise angle in radians [0,2pi) between the muon trajectory and the positive x-axis, in the x-y plane of the volume frame.

	momentum (mom), the absolute value of the muon momentum in GeV

	Muon properties should not be updated manually. Instead, call:
	
	.propagate_dz_dz(dz) to update the x,y,z positions of the muons for a given propagation dz in the z-axis.

	.propagate_dz_d(d) to update the x,y,z positions of the muons for a given propagation d in the muons’ trajectories.

	.scatter_dxy(dx_vol, dy_vol, mask) to shift the x,y positions of the muons, for which the values of the optional Boolean mask is true, by the specified amount.

	.scatter_dtheta_dphi(dtheta_vol, dphi_vol, mask) to alter the theta,phi angles of the muons, for which the values of the optional Boolean mask is true, by the specified amount.

Important

Muon momenta is currently constant

Important

Eventually the muon batch will be extended to store information about the inferred momentum of the muons reco_mom.
However currently the reco_mom property will return the TRUE momentum of the muons, with no simulation of measurement precision.

By default, the MuonBatch class only contains the current position of the muons,
however the .snapshot_xyz method can be used to store the xy positions of the muons at any time, to a dictionary with float z-position keys, xyz_hist.

In addition to storing the properties of the muons, the MuonBatch class is also used to store the detector hits associated with each muon.
Hits may be added via the .append_hits method, and stored in the _hits attribute.
Hits can then be retrieved by the .get_hits method.

	Parameters:

	
	xy_p_theta_phi (Tensor) – (N_muon, 5) tensor,
with xy [m], p [GeV], theta [r] (0, pi/2) defined w.r.t z axis, phi [r] (0, 2pi) defined anticlockwise from x axis

	init_z (Union[Tensor, float]) – initial z position of all muons in the batch

	device (device) – device on which to place the muon tensors

	
append_hits(hits, pos)

	Record hits to _hits.

	Parameters:

	
	hits (Dict[str, Tensor]) – dictionary of ‘reco_xy’, ‘gen_xy’, ‘z’ keys to (muons, *) tensors.

	pos (str) – Position of detector array in which the hits were recorded, currently either ‘above’ or ‘below’.

	Return type:

	None

	
copy()

	Creates a copy of the muon batch at the current position and trajectories.
Tensors are detached and cloned.

Important

This does NOT copy of hits

	Return type:

	MuonBatch

	Returns:

	New MuonBatch with xyz, and theta,phi equal to those of the current MuonBatch.

	
dtheta(theta_ref)

	Computes absolute difference in the theta between the muons and the supplied theta angles

	Parameters:

	theta_ref (Tensor) – (N,) tensor to compare with the muon theta values

	Return type:

	Tensor

	Returns:

	Absolute difference between muons’ theta and the supplied reference theta

	
dtheta_x(theta_ref_x)

	Computes absolute difference in the theta_x between the muons and the supplied theta_x angles

	Parameters:

	theta_ref_x (Tensor) – (N,) tensor to compare with the muon theta_x values

	Return type:

	Tensor

	Returns:

	Absolute difference between muons’ theta_x and the supplied reference theta_x

	
dtheta_y(theta_ref_y)

	Computes absolute difference in the theta_y between the muons and the supplied theta_y angles

	Parameters:

	theta_ref_y (Tensor) – (N,) tensor to compare with the muon theta_y values

	Return type:

	Tensor

	Returns:

	Absolute difference between muons’ theta_y and the supplied reference theta_y

	
filter_muons(keep_mask)

	Removes all muons, and their associated hits, except for muons specified as True in keep_mask.

	Parameters:

	keep_mask (Tensor) – (N,) Boolean tensor. Muons with False elements will be removed, along with their hits.

	Return type:

	None

	
get_hits(xy_low=None, xy_high=None)

	Retrieve the recorded hits for the muons, optionally only for muons between the specified xy ranges.
For ease of use, the list of hits are stacked into single tensors, resulting in
a dictionary mapping detector-array position to a dictionary mapping hit variables to (N_muons, N_hits, *) tensors.

	Parameters:

	
	xy_low (Union[Tuple[float, float], Tensor, None]) – (2,N) optional lower limit on xy positions

	xy_high (Union[Tuple[float, float], Tensor, None]) – (2,N) optional upper limit on xy positions

	Return type:

	Dict[str, Dict[str, Tensor]]

	Returns:

	Hits, a dictionary mapping detector-array position to a dictionary mapping hit variables to (N_muons, N_hits, *) tensors.

	
get_xy_mask(xy_low, xy_high)

	Computes a (N,) Boolean tensor, with True values corresponding to muons which are within the supplied ranges in xy.

	Parameters:

	
	xy_low (Union[Tuple[float, float], Tensor, None]) – (2,N) optional lower limit on xy positions

	xy_high (Union[Tuple[float, float], Tensor, None]) – (2,N) optional upper limit on xy positions

	Return type:

	Tensor

	Returns:

	(N,) Boolean mask with True values corresponding to muons which are with xy positions >= xy_low and < xy_high

	
property mom: Tensor

	

	
property muons: Tensor

	

	
p_dim = 3

	

	
ph_dim = 5

	

	
property phi: Tensor

	

	
static phi_from_theta_xy(theta_x, theta_y)

	Computes the phi angle from theta_x and theta_y.

Important

This function does NOT work if theta is > pi/2

	Parameters:

	
	theta_x (Tensor) – angle from the negative z-axis in the xz plane

	theta_y (Tensor) – angle from the negative z-axis in the yz plane

	Return type:

	Tensor

	Returns:

	phi, the anti-clockwise angle from the positive x axis, in the xy plane

	
propagate_d(d, mask=None)

	Propagates all muons in their direction of flight by the specified distances.

	Parameters:

	
	d (Union[Tensor, float]) – (1,) or (N,) distance(s) in metres to move.

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are altered.

	Return type:

	None

	
propagate_dz(dz, mask=None)

	Propagates all muons in their direction of flight such that afterwards they will all have moved a specified distance in the negative z direction.

	Parameters:

	
	dz (Union[Tensor, float]) – distance in metres to move in the negative z direction, i.e. a positive dz results in the muons travelling downwards.

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are altered.

	Return type:

	None

	
property reco_mom: Tensor

	

	
remove_upwards_muons()

	Removes muons, and their hits, if their theta >= pi/2, i.e. they are travelling upwards after a large scattering.
Should be run after any changes to theta, but make sure that references (e.g. masks) to the complete set of muons are no longer required.

	Return type:

	None

	
scatter_dtheta_dphi(dtheta_vol=None, dphi_vol=None, mask=None)

	Changes the trajectory of the muons in theta-phi by the specified amounts, with no change in their x,y,z positions.
If a mask is supplied, then only muons with True mask elements are altered.

	Parameters:

	
	dtheta_vol (Optional[Tensor]) – (N,) tensor of angular changes in theta

	dphi_vol (Optional[Tensor]) – (N,) tensor of angular changes in phi

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are altered.

	Return type:

	None

	
scatter_dtheta_xy(dtheta_x_vol=None, dtheta_y_vol=None, mask=None)

	Changes the trajectory of the muons in theta-phi by the specified amounts in dtheta_xy, with no change in their x,y,z positions.
If a mask is supplied, then only muons with True mask elements are altered.

	Parameters:

	
	dtheta_x_vol (Optional[Tensor]) – (N,) tensor of angular changes in theta_x

	dtheta_y_vol (Optional[Tensor]) – (N,) tensor of angular changes in theta_y

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are altered.

	Return type:

	None

	
scatter_dxyz(dx_vol=None, dy_vol=None, dz_vol=None, mask=None)

	Displaces the muons in xyz by the specified amounts.
If a mask is supplied, then only muons with True mask elements are displaced.

	Parameters:

	
	dx_vol (Optional[Tensor]) – (N,) tensor of displacements in x

	dy_vol (Optional[Tensor]) – (N,) tensor of displacements in y

	dz_vol (Optional[Tensor]) – (N,) tensor of displacements in z

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are displaced.

	Return type:

	None

	
snapshot_xyz()

	Store the current xy positions of the muons in .xyz_hist, indexed by the current z position.

	Return type:

	None

	
th_dim = 4

	

	
property theta: Tensor

	

	
static theta_from_theta_xy(theta_x, theta_y)

	Computes the theta angle from theta_x and theta_y.

Important

This function does NOT work if theta is > pi/2

	Parameters:

	
	theta_x (Tensor) – angle from the negative z-axis in the xz plane

	theta_y (Tensor) – angle from the negative z-axis in the yz plane

	Return type:

	Tensor

	Returns:

	theta, the anti-clockwise angle from the negative z axis, in the xyz plane

	
property theta_x: Tensor

	

	
static theta_x_from_theta_phi(theta, phi)

	Computes the angle from the negative z-axis in the xz plane from theta and phi

Important

This function does NOT work if theta is > pi/2

	Parameters:

	
	theta (Tensor) – the anti-clockwise angle from the negative z axis, in the xyz plane

	phi (Tensor) – the anti-clockwise angle from the positive x axis, in the xy plane

	Return type:

	Tensor

	Returns:

	theta_x, the angle from the negative z-axis in the xz plane

	
property theta_xy: Tensor

	

	
property theta_y: Tensor

	

	
static theta_y_from_theta_phi(theta, phi)

	Computes the angle from the negative z-axis in the yz plane from theta and phi

Important

This function does NOT work if theta is > pi/2

	Parameters:

	
	theta (Tensor) – the anti-clockwise angle from the negative z axis, in the xyz plane

	phi (Tensor) – the anti-clockwise angle from the positive x axis, in the xy plane

	Return type:

	Tensor

	Returns:

	theta_y, the angle from the negative z-axis in the yz plane

	
property upwards_muons: Tensor

	

	
property x: Tensor

	

	
x_dim = 0

	

	
property xy: Tensor

	

	
property xyz: Tensor

	

	
property xyz_hist: List[Tensor]

	

	
property y: Tensor

	

	
y_dim = 1

	

	
property z: Tensor

	

	
z_dim = 2

	

tomopt.optimisation package

Subpackages

	tomopt.optimisation.callbacks package

	tomopt.optimisation.data package

	tomopt.optimisation.loss package

	tomopt.optimisation.wrapper package

tomopt.optimisation.callbacks package

Submodules

tomopt.optimisation.callbacks.callback module

	
class tomopt.optimisation.callbacks.callback.Callback

	Bases: object

Implements the base class from which all callback should inherit.
Callbacks are used as part of the fitting, validation, and prediction methods of AbsVolumeWrapper.
They can interject at various points, but by default do nothing. Please check in the AbsVolumeWrapper
to see when exactly their interjections are called.

When writing new callbacks, the VolumeWrapper
they are associated with will be their wrapper attribute.
Their wrapper will have a fit_params attribute (FitParams) which is a data-class style object.
It contains all the objects associated with the fit and predictions, including other callbacks.
Callback interjections should read/write to wrapper.fit_params, rather than returning values.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	
on_backwards_begin()

	Runs when the loss for a batch of passive volumes has been computed, but not yet backpropagated.

	Return type:

	None

	
on_backwards_end()

	Runs when the loss for a batch of passive volumes has been backpropagated, but parameters have not yet been updated.

	Return type:

	None

	
on_epoch_begin()

	Runs when a new training or validations epoch begins.

	Return type:

	None

	
on_epoch_end()

	Runs when a training or validations epoch ends.

	Return type:

	None

	
on_mu_batch_begin()

	Runs when a new batch of muons begins.

	Return type:

	None

	
on_mu_batch_end()

	Runs when a batch muons ends and scatters have been added to the volume inferrer.

	Return type:

	None

	
on_pred_begin()

	Runs when the wrapper is about to begin in prediction mode.

	Return type:

	None

	
on_pred_end()

	Runs when the wrapper has finished in prediction mode.

	Return type:

	None

	
on_scatter_end()

	Runs when a scatters for the latest muon batch have been computed, but not yet added to the volume inferrer.

	Return type:

	None

	
on_step_end()

	Runs when the parameters have been updated.

	Return type:

	None

	
on_train_begin()

	Runs when detector fitting begins.

	Return type:

	None

	
on_train_end()

	Runs when detector fitting ends.

	Return type:

	None

	
on_volume_batch_begin()

	Runs when a new batch of passive volume layouts is begins.

	Return type:

	None

	
on_volume_batch_end()

	Runs when a batch of passive volume layouts is ends.

	Return type:

	None

	
on_volume_begin()

	Runs when a new passive volume layout is loaded.

	Return type:

	None

	
on_volume_end()

	Runs when a passive volume layout has been predicted.

	Return type:

	None

	
on_x0_pred_begin()

	Runs when the all the muons for a volume have propagated, and the volume inferrer is about to make its final prediction.

	Return type:

	None

	
on_x0_pred_end()

	Runs after the volume inferrer has made its final prediction, but before the loss is computed.

	Return type:

	None

	
set_wrapper(wrapper)

	
	Parameters:

	wrapper (AbsVolumeWrapper) – Volume wrapper to associate with the callback

	Return type:

	None

	
wrapper: Optional[AbsVolumeWrapper] = None

	

tomopt.optimisation.callbacks.cyclic_callbacks module

	
class tomopt.optimisation.callbacks.cyclic_callbacks.CyclicCallback

	Bases: Callback

tomopt.optimisation.callbacks.data_callbacks module

	
class tomopt.optimisation.callbacks.data_callbacks.MuonResampler

	Bases: Callback

Resamples muons to only include those which will impact the passive volume at some point, even if they only hit the bottom layer.

	
static check_mu_batch(mu, volume)

	Checks the provided muon batch to determine which muons will impact the passive volume at any point

	Parameters:

	
	mu (MuonBatch) – incoming batch of muons

	volume (Volume) – Volume containing the passive volume to test against

	Return type:

	Tensor

	Returns:

	(muons) Boolean tensor where True indicates that the muon will hit the passive volume

	
on_mu_batch_begin()

	Resamples muons prior to propagation through the volume such that all muons will hit the passive volume.

TODO Add check for realistic validation

	Return type:

	None

	
static resample(mus, volume, gen)

	Resamples muons until all muons will hit the passive volume.

	Parameters:

	
	mus (Tensor) – xy_p_theta_phi tensor designed to initialise a MuonBatch

	volume (Volume) – Volume containing the passive volume to test against

	gen (AbsMuonGenerator) – Muon generator for sampling replacement muons

	Return type:

	Tensor

	Returns:

	xy_p_theta_phi tensor designed to initialise a MuonBatch

tomopt.optimisation.callbacks.detector_callbacks module

	
class tomopt.optimisation.callbacks.detector_callbacks.PanelCentring

	Bases: Callback

Callback class for panel centring in the optimisation process.

This callback is used to centre the panels of PanelDetectorLayer objects
by setting their xy coordinates to the mean xy value of all panels in the layer.

This update takes place after the panel positions have been updated in the optimisation process.

	
on_step_end()

	Updates the xy coordinates of all panels in the PanelDetectorLayer objects after they have be updated, based on their current mean xy position.

	Return type:

	None

	
class tomopt.optimisation.callbacks.detector_callbacks.PanelUpdateLimiter(max_xy_step=None, max_z_step=None, max_xy_span_step=None)

	Bases: Callback

Limits the maximum difference that optimisers can make to panel parameters, to prevent them from being affected by large updates from anomolous gradients.
This is enacted by a hard-clamping based on the initial and final parameter values before/after each update step.

	Parameters:

	
	max_xy_step (Optional[Tuple[float, float]]) – maximum update in xy position of panels

	max_z_step (Optional[float]) – maximum update in z position of panels

	max_xy_span_step (Optional[Tuple[float, float]]) – maximum update in xy_span position of panels

	
on_backwards_end()

	Records the current paramaters of each panel before they are updated.

	Return type:

	None

	
on_step_end()

	After the update step, goes through and hard-clamps parameter updates based on the difference between their current values
and values before the update step.

	Return type:

	None

	
class tomopt.optimisation.callbacks.detector_callbacks.SigmoidPanelSmoothnessSchedule(smooth_range)

	Bases: PostWarmupCallback

Creates an annealing schedule for the smooth attribute of SigmoidDetectorPanel.
This can be used to move from smooth, unphysical panel with high sensitivity outside the physical panel boundaries,
to one with sharper decrease in resolution | efficiency at the edge, and so more closely resembles a physical panel, whilst still being differentiable.

	Parameters:

	smooth_range (Tuple[float, float]) – tuple of initial and final values for the smooth attributes of all panels in the volume.
A base-10 log schedule used over the number of epochs-total number of warmup epochs.

	
on_epoch_begin()

	At the start of each training epoch, will anneal the SigmoidDetectorPanel s’ smooth attributes, if the callback is active.

	Return type:

	None

	
on_train_begin()

	Sets all SigmoidDetectorPanel s to their initial smooth values.

	Return type:

	None

tomopt.optimisation.callbacks.diagnostic_callbacks module

	
class tomopt.optimisation.callbacks.diagnostic_callbacks.HitRecord

	Bases: ScatterRecord

Records the hits of the muons.
Once recorded, the hits can be retrieved via the get_record() method.
plot_hit_density() may be used to plot the hit record.

Warning

Currently this callback makes no distinction between different volume layouts, and is designed to used over a single volume layout.

TODO extend these to create one record per volume

	
on_scatter_end()

	Saves the hits of the latest muon batch.

	Return type:

	None

	
class tomopt.optimisation.callbacks.diagnostic_callbacks.ScatterRecord

	Bases: Callback

Records the PoCAs of the muons which are located inside the passive volume.
Once recorded, the PoCAs can be retrieved via the get_record() method.
plot_scatter_density() may be used to plot the scatter record.

Warning

Currently this callback makes no distinction between different volume layouts, and is designed to used over a single volume layout.

TODO extend these to create one record per volume

	
get_record(as_df=False)

	Access the recorded PoCAs.

	Parameters:

	as_df (bool) – if True, will return a Pandas DataFrame, otherwise will return a Tensor

	Return type:

	Union[Tensor, DataFrame]

	Returns:

	a Pandas DataFrame or a Tensor of recorded PoCAs

	
on_pred_begin()

	Prepares to record scatters

	Return type:

	None

	
on_scatter_end()

	Saves the PoCAs of the latest muon batch.

	Return type:

	None

	
on_train_begin()

	Prepares to record scatters

	Return type:

	None

tomopt.optimisation.callbacks.eval_metric module

	
class tomopt.optimisation.callbacks.eval_metric.EvalMetric(lower_metric_better, name=None, main_metric=True)

	Bases: Callback

Base class from which metric should inherit and implement the computation of their metric values.
Inheriting classes will automatically be detected by MetricLogger
and included in live feedback if it is the “main metric”

	Parameters:

	
	lower_metric_better (bool) – if True, a lower value of the metric should be considered better than a higher value

	name (Optional[str]) – name to associate with the metric

	main_metric (bool) – whether this metric should be considered the “main metric”

	
get_metric()

	This will be called by on_epoch_end()

	Return type:

	float

	Returns:

	metric value

	
on_train_begin()

	Ensures that only one main metric is used

	Return type:

	None

tomopt.optimisation.callbacks.grad_callbacks module

	
class tomopt.optimisation.callbacks.grad_callbacks.NoMoreNaNs

	Bases: Callback

Prior to parameter updates, this callback will check and set any NaN gradients to zero.
Updates based on NaN gradients will set the parameter value to NaN.

Important

As new parameters are introduced, e.g. through new detector models, this callback will need to be updated.

	
on_backwards_end()

	Prior to optimiser updates, parameter gradients are checked for NaNs.

	Return type:

	None

tomopt.optimisation.callbacks.heatmap_gif module

	
class tomopt.optimisation.callbacks.heatmap_gif.HeatMapGif(gif_filename='heatmap.gif')

	Bases: Callback

Records a gif of the first heatmap in the first detector layer during training.

	Parameters:

	gif_filename (str) – savename for the gif (will be appended to the callback savepath)

	
on_epoch_begin()

	When a new training epoch begins, saves an image of the current layout of the first heatmap in the first detector layer

	Return type:

	None

	
on_train_begin()

	Prepares to record a new gif

	Return type:

	None

	
on_train_end()

	When training, saves an image of the current layout of the first heatmap in the first detector layer
and then combines all images into a gif

	Return type:

	None

tomopt.optimisation.callbacks.monitors module

	
class tomopt.optimisation.callbacks.monitors.MetricLogger(gif_filename='optimisation_history.gif', gif_length=10.0, show_plots=False)

	Bases: Callback

Provides live feedback during training showing a variety of metrics to help highlight problems or test hyper-parameters without completing a full training.
If show_plots is false, will instead print training and validation losses at the end of each epoch.
The full history is available as a dictionary by calling get_loss_history().
Additionally, a gif of the optimisation can be saved.

	Parameters:

	
	gif_filename (Optional[str]) – optional savename for recording a gif of the optimisation process (None -> no gif)
The savename will be appended to the callback savepath

	gif_length (float) – If saving gifs, controls the total length in seconds

	show_plots (bool) – whether to provide live plots during optimisation in notebooks

	
cat_palette = 'tab10'

	

	
get_loss_history()

	Get the current history of losses and metrics

	Returns:

	tuple of ordered dictionaries: first with losses, second with validation metrics

	Return type:

	history

	
get_results(loaded_best)

	
	Return type:

	Dict[str, float]

	
h_mid = 8

	

	
lbl_col = 'black'

	

	
lbl_sz = 24

	

	
leg_sz = 16

	

	
on_backwards_end()

	Records the training loss for the latest volume batch

	Return type:

	None

	
on_epoch_begin()

	Prepare to track new loss and snapshot the plots if training

	Return type:

	None

	
on_epoch_end()

	If validation epoch finished, record validation losses, compute info and update plots

	Return type:

	None

	
on_train_begin()

	Prepare for new training

	Return type:

	None

	
on_train_end()

	Cleans up plots, and optionally creates a gif of the training history

	Return type:

	None

	
on_volume_batch_end()

	Grabs the validation losses for the latest volume batch

	Return type:

	None

	
on_volume_end()

	Grabs the validation sub-losses for the latest volume

	Return type:

	None

	
print_losses()

	Print training and validation losses for the last epoch

	Return type:

	None

	
style = {'rc': {'patch.edgecolor': 'none'}, 'style': 'whitegrid'}

	

	
tk_col = 'black'

	

	
tk_sz = 16

	

	
update_plot()

	Updates the plot(s).

	Return type:

	None

	
w_mid = 14.222222222222221

	

	
class tomopt.optimisation.callbacks.monitors.PanelMetricLogger(gif_filename='optimisation_history.gif', gif_length=10.0, show_plots=False)

	Bases: MetricLogger

Logger for use with PanelDetectorLayer s

	Parameters:

	
	gif_filename (Optional[str]) – optional savename for recording a gif of the optimisation process (None -> no gif)
The savename will be appended to the callback savepath

	gif_length (float) – If saving gifs, controls the total length in seconds

	show_plots (bool) – whether to provide live plots during optimisation in notebooks

	
update_plot()

	Updates the plot(s).

	Return type:

	None

tomopt.optimisation.callbacks.opt_callbacks module

	
class tomopt.optimisation.callbacks.opt_callbacks.EpochSave

	Bases: Callback

Saves the state of the volume at the end of each training epoch to a unique file.
This can be used to load a specifc state to either be used, or to resume training.

	
on_epoch_end()

	Runs when a training or validations epoch ends.

	Return type:

	None

	
class tomopt.optimisation.callbacks.opt_callbacks.OneCycle(opt_name, warmup_length, init_lr=None, init_mom=None, mid_lr=None, mid_mom=None, final_lr=None, final_mom=None)

	Bases: AbsOptSchedule

Callback implementing Smith 1-cycle evolution for lr and momentum (beta_1) https://arxiv.org/abs/1803.09820

	In the warmup phase:
	Learning rate is increased from init_lr to mid_lr,
Momentum is decreased from init_mom to mid_mom, to stabilise the use of high LRs

	In the convergence phase:
	Learning rate is decreased from mid_lr to final_lr,
Momentum is increased from mid_mom to final_mom

Setting the learning rate or momentum here will override the values specified when instantiating the VolumeWrapper.
learning rate or momentum arguments can be None to avoid annealing or overriding their values.

	Parameters:

	
	opt_name (str) – name of optimiser that should be affected by the scheduler

	warmup_length (int) – number of epochs to use for the warmup phase

	init_lr (Optional[float]) – initial learning rate (low)

	init_mom (Optional[float]) – initial momentum (high)

	mid_lr (Optional[float]) – nominal learning rate (high),

	mid_mom (Optional[float]) – nominal momentum (moderate),

	final_lr (Optional[float]) – final learning rate (low),

	final_mom (Optional[float]) – final momentum (high)

	
on_epoch_end()

	Runs when a training or validations epoch ends.

	Return type:

	None

	
schedule()

	Compute LR and momentum as a function of iter_cnt, according to defined ranges.

	Return type:

	Tuple[Optional[float], Optional[float]]

tomopt.optimisation.callbacks.pred_callbacks module

	
class tomopt.optimisation.callbacks.pred_callbacks.PredHandler

	Bases: Callback

Default callback for predictions. Collects predictions and true voxelwise X0 pairs for a range of volumes and returns them as list of tuples of numpy arrays
when get_preds() is called.

	
get_preds()

	
	Return type:

	List[Tuple[ndarray, ndarray]]

	Returns:

	List of predicted and target pairs

	
on_pred_begin()

	Prepares to record predictions

	Return type:

	None

	
on_x0_pred_end()

	Records predictions and true volume layout for the latest volume

	Return type:

	None

	
class tomopt.optimisation.callbacks.pred_callbacks.Save2HDF5PredHandler(path, use_volume_target, overwrite=False, x02id=None, compression='lzf')

	Bases: VolumeTargetPredHandler

Saves predictions and targets to an HDF5 file, rather than caching and returning them.
Samples are written incrementally. Can optionally save volume targets rather than voxel-wise X0 targets
If an x02id lookup is provided, it transforms the target from an X0 value to a material class ID.

	Parameters:

	
	path (Path) – savename of file to save predictions and targets

	use_volume_target (bool) – if True, saves the volume target value instead of the volume X0s

	overwrite (bool) – if True will overwrite existing files with the same path, otherwise will append to them

	x02id (Optional[Dict[float, int]]) – optional map from X0 values to class IDs

	compression (Optional[str]) – optional string representation of any compression to use when saving data

	
on_x0_pred_end()

	Records predictions and true volume layout or target for the latest volume

	Return type:

	None

	
class tomopt.optimisation.callbacks.pred_callbacks.VolumeTargetPredHandler(x02id=None)

	Bases: PredHandler

Returns the volume target as the target value, rather than the voxel-wise X0s.
If an x02id lookup is provided, it transforms the target from an X0 value to a material class ID.

	Parameters:

	x02id (Optional[Dict[float, int]]) – optional map from X0 values to class IDs

	
on_x0_pred_end()

	Records predictions and volume target for the latest volume

	Return type:

	None

tomopt.optimisation.callbacks.warmup_callbacks module

	
class tomopt.optimisation.callbacks.warmup_callbacks.CostCoefWarmup(n_warmup)

	Bases: WarmupCallback

Sets a more stable cost coefficient in the AbsDetectorLoss
by averaging the inference-error component for several epochs.
During this warm-up monitoring phase, the detectors will be kept fixed.

	Parameters:

	n_warmup (int) – number of training epochs to wait before setting the cost coefficient

	
on_epoch_end()

	If enough epochs have past, the overall median inference-error is computed and used to set the cost coefficient in the loss.

	Return type:

	None

	
on_volume_end()

	If training, grabs the inference-error for the latest volume

	Return type:

	None

	
class tomopt.optimisation.callbacks.warmup_callbacks.OptConfig(n_warmup, rates)

	Bases: WarmupCallback

Allows the user to specify the desired update steps for parameters in physical units.
Over the course of several warm-up epochs the gradients on the parameters are monitored, after which suitable learning rates for the optimisers are set,
such that the parameters will move by the desired amount every update.
During the warm-up, the detectors will not be updated as optimiser learning rates will be set to zero.

The calculation here does not account for the effect of the optimiser’s momentum, nor scheduling and adaption of learning rates, and so the actual update rates may be different from the desired ones.

	Parameters:

	
	n_warmup (int) – number of training epochs to wait before setting learning rates

	rates (Dict[str, float]) – dictionary of desired update rates for the parameters
The keys are the names of the optimisers specified in the optimiser dictionary of the wrapper.
The values are the desired update rates for the parameters in physical units.
For example, if the optimiser is SGD, and the parameter is the xy position of a panel, then the update rate should be in metres.
The parameters that are being optimisered are expected to be found in the zeroth parameter group of the optimiser, i.e. wrapper.opts[opt].param_groups[0][‘params’].
This implies that the optimiser is expected to have only one parameter group.

	Example::
	>>> OptConfig(n_warmup=2, rates={'xy_pos_opt':xy_pos_rate, 'z_pos_opt':z_pos_rate, 'xy_span_opt':xy_span_rate})

	
on_backwards_end()

	Grabs training gradients from detector parameters

	Return type:

	None

	
on_epoch_end()

	When enough training epochs have passed, sets suitable learning rates for the optimisers based on the median gradients and desired update rates

	Return type:

	None

	
class tomopt.optimisation.callbacks.warmup_callbacks.PostWarmupCallback

	Bases: Callback

Callback class that waits for all WarmupCallback obejcts to finish their warmups before activating.

	
check_warmups()

	When all WarmupCallbacks have finished, sets the callback to be active.

	Return type:

	None

	
on_epoch_begin()

	Checks to see whether the callback should be active.

	Return type:

	None

	
on_train_begin()

	Prepares for new training

	Return type:

	None

	
class tomopt.optimisation.callbacks.warmup_callbacks.WarmupCallback(n_warmup)

	Bases: Callback

Warmup callbacks act at the start of training to track and set parameters based on the initial state of the detector.
During warmup, optimisation of the detector is prevented, via a flag.
If multiple warmup callbacks are present, they will wait to warmup according to the order they are provided in.
Once the last warmup callback finished, the flag will be set to allow the detectors to be optimised.
When a WarmupCallback is warming up, its warmup_active attribute will be True.

Important

When inheriting from WarmupCallback, the super methods of on_train_begin, on_epoch_begin, and on_epoch_end must be called.

	Parameters:

	n_warmup (int) – number of training epochs over-which to warmup

	
check_warmups()

	If a WarmupCallback has finished, then its warmup_active is set to False,
and the next WarmupCallback will have its warmup_active is set to True.
If the finishing callback was the last WarmupCallback, then the “skip optimisation” flag is unset.

	Return type:

	None

	
on_epoch_begin()

	Ensures that when one WarmupCallback has finished, either the next is called, or the detectors are set to be optimised.

	Return type:

	None

	
on_epoch_end()

	After a training epoch is finished, increments the number of epochs that the callback has been warming up, provided it is active.

	Return type:

	None

	
on_train_begin()

	Prepares to warmup

	Return type:

	None

tomopt.optimisation.data package

Submodules

tomopt.optimisation.data.passives module

	
class tomopt.optimisation.data.passives.AbsBlockPassiveGenerator(volume, block_size, block_size_max_half=None, materials=None)

	Bases: AbsPassiveGenerator

Abstract base class for classes that generate new passive layouts which contain a single cuboid of material (block).

	The _generate() method should be overridden to return:
	
	A function that provides an xy tensor for a given layer when called with its z position, length and width, and size.

	An optional “target” value for the layout

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

The block will be centred randomly in the volume, and can either be of fixed or random size.

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	block_size (Optional[Tuple[float, float, float]]) – if set, will generate blocks of the specified size and random orientation, otherwise will randomly set the size of the blocks

	block_size_max_half (Optional[bool]) – if True and block_size is None, the maximum size of blocks will be set to half the size of the passive volume

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

	
class tomopt.optimisation.data.passives.AbsPassiveGenerator(volume, materials=None)

	Bases: object

Abstract base class for classes that generate new passive layouts.

	The _generate() method should be overridden to return:
	
	A function that provides an xy tensor for a given layer when called with its z position, length and width, and size.

	An optional “target” value for the layout

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

	
generate()

	
	Return type:

	Callable[[Tensor, Tensor, float], Tensor]

	Returns:

	The layout function and no target

	
get_data()

	
	Returns:

	A function that provides an xy tensor for a given layer when called with its z position, length and width, and size.
Target: An optional “target” value for the layout

	Return type:

	RadLengthFunc

	
class tomopt.optimisation.data.passives.BlockPresentPassiveGenerator(volume, block_size, block_size_max_half=None, materials=None)

	Bases: AbsBlockPassiveGenerator

Generates new passive layouts which contain a single cuboid of material (block) of random material against a fixed background material.
Blocks are always present, but can potentially be of the same material as the background.
The target for the volumes is the X0 of the block material.
The background material for the background will always be the zeroth material provided during initialisation.

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

The block will be centred randomly in the volume, and can either be of fixed or random size.

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	block_size (Optional[Tuple[float, float, float]]) – if set, will generate blocks of the specified size and random orientation, otherwise will randomly set the size of the blocks

	block_size_max_half (Optional[bool]) – if True and block_size is None, the maximum size of blocks will be set to half the size of the passive volume

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

	
class tomopt.optimisation.data.passives.PassiveYielder(passives, n_passives=None, shuffle=True)

	Bases: object

	Dataset class that can either:
	Yield from a set of pre-specified passive-volume layouts, and optional targets
Generate and yield random layouts and optional targets from a provided generator

	Parameters:

	
	passives (Union[List[Union[Tuple[Callable[[Tensor, Tensor, float], Tensor], Optional[Tensor]], Callable[[Tensor, Tensor, float], Tensor]]], AbsPassiveGenerator]) – Either a list of passive-volume functions (and optional targets together in a tuple), or a passive-volume generator

	n_passives (Optional[int]) – if a generator is used, this determines the number of volumes to generator per epoch in training, or in total when predicting

	shuffle (bool) – If a list of pre-specified layouts is provided, their order will be shuffled if this is True

	
class tomopt.optimisation.data.passives.RandomBlockPassiveGenerator(volume, block_size, sort_x0, enforce_diff_mat, block_size_max_half=None, materials=None)

	Bases: AbsBlockPassiveGenerator

Generates new passive layouts which contain a single cuboid of material (block) of random material against a random background material.
Blocks are always present, but can potentially be of the same material as the background.
The target for the volumes is the X0 of the block material.

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

The block will be centred randomly in the volume, and can either be of fixed or random size.

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	block_size (Optional[Tuple[float, float, float]]) – if set, will generate blocks of the specified size and random orientation, otherwise will randomly set the size of the blocks

	sort_x0 (bool) – if True, the block will always have a lower X0 than the background, unless they are of the same material

	enforce_diff_mat (bool) – if True, the block will always be of a different material to the background

	block_size_max_half (Optional[bool]) – if True and block_size is None, the maximum size of blocks will be set to half the size of the passive volume

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

	
class tomopt.optimisation.data.passives.VoxelPassiveGenerator(volume, materials=None)

	Bases: AbsPassiveGenerator

Generates new passive layouts where every voxel is of a random material.

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

tomopt.optimisation.loss package

Submodules

tomopt.optimisation.loss.loss module

	
class tomopt.optimisation.loss.loss.AbsDetectorLoss(*, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: Module

Abstract base class from which all loss functions should inherit.

	The loss consists of:
	
	A component that quantifies the performance of the predictions made via the detectors

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The performance component (error) should ideally be as close to the final task that the detector will be performing,
and will depend on the output of the inference algorithm used

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

Inheriting classes will need to at least override the _get_inference_loss method.

	Parameters:

	
	target_budget (Optional[float]) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
forward(pred, volume)

	Computes the loss for the predictions of a single volume using the current state of the detector

	Parameters:

	
	pred (Tensor) – the predictions from the inference

	volume (Volume) – Volume containing the passive volume that was being predicted and the detector being optimised

	Return type:

	Tensor

	Returns:

	The loss for the predictions and detector

	
class tomopt.optimisation.loss.loss.AbsMaterialClassLoss(*, x02id, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsDetectorLoss

Abstract base class for cases in which the task is to classify materials in the passive volumes, or some other aspect of the volumes.
The targets returned by the volume are expected to be float X0s, and are converted to class IDs using an X0 to ID map.

	The loss consists of:
	
	A component that quantifies the performance of the predictions made via the detectors

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The performance component (error) should ideally be as close to the final task that the detector will be performing,
and will depend on the output of the inference algorithm used

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

Inheriting classes will need to at least override the _get_inference_loss method.

	Parameters:

	
	x02id (Dict[float, int]) – Dictionary mapping float X0 targets to integer class IDs

	target_budget (float) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
class tomopt.optimisation.loss.loss.VolumeClassLoss(*, x02id, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsMaterialClassLoss

Loss function designed for tasks where some overall target of the passive volume must be classified, and the target of the volume is encoded as a float X0.
E.g. what is the material of a large block in the volume.

	The Inference-error component of the loss depends on shape of predictions provided:
	If the predictions are of shape (1,classes,voxels), they will be interpreted as multi-class log-probabilities and the negative log-likelihood computed
If the predictions are of shape (1,1,voxels), they will be interpreted as binary class probabilities and the binary cross-entropy computed

The ordering of the “flattened” voxels should match that of volume.get_rad_cube().flatten()

	The total loss consists of:
	
	The NLL or BCE

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

	Parameters:

	
	x02id (Dict[float, int]) – Dictionary mapping float X0 targets to integer class IDs

	target_budget (float) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
class tomopt.optimisation.loss.loss.VolumeIntClassLoss(*, targ2int, pred_int_start, use_mse, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsDetectorLoss

Loss function designed for tasks where some overall integer target of the passive volume must be classified,
and the values of this target are quantifiably comparable (i.e. the integers are treatable as numbers not just categorical codes).
E.g. Predicting how many layers of the passive volume are filled with a given material.

The Inference-error component of the loss computed as the integer_class_loss().
Predictions should be provided as probabilities for every possible integer target
The target from the volume can be converted to an integer (e.g. height to layer ID) using a targ2int function

	The total loss consists of:
	
	The integer class loss (ICL)

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

	Parameters:

	
	target_budget (float) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
class tomopt.optimisation.loss.loss.VolumeMSELoss(*, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsDetectorLoss

TODO: Add unit tests and docs

	
class tomopt.optimisation.loss.loss.VoxelClassLoss(*, x02id, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsMaterialClassLoss

Loss function designed for tasks where the voxelwise material class ID must be classified.
Inference-error component of the loss is the negative log-likelihood on log class-probabilities, averaged over all voxels (NLL)

Predictions should be provided as log-softmaxed class probabilities per voxel, with shape (1,classes,voxels).
The ordering of the “flattened” voxels should match that of volume.get_rad_cube().flatten()

	The total loss consists of:
	
	The NLL

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

	Parameters:

	
	x02id (Dict[float, int]) – Dictionary mapping float X0 targets to integer class IDs

	target_budget (float) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
class tomopt.optimisation.loss.loss.VoxelX0Loss(*, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsDetectorLoss

Loss function designed for tasks where the voxelwise X0 value must be predicted as floats.
Inference-error component of the loss is the squared-error on X0 predictions, averaged over all voxels (MSE)

	The total loss consists of:
	
	The MSE

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

	Parameters:

	
	target_budget (Optional[float]) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

tomopt.optimisation.loss.sub_losses module

	
tomopt.optimisation.loss.sub_losses.integer_class_loss(int_probs, target_int, pred_start_int, use_mse, weight=None, reduction='mean')

	Loss for classifying integers, when regression is not applicable.
It assumed that the the integers really are quantifiably comparable, and not categorical codes of classes.

Like multiclass-classification, predictions are a probabilities for each possible integer,
but the ICL aims to penalise close predictions less than far-off ones:
For a target of 3 and a close prediction of softmax([1,3,10,5,5,3,1]) and a far-off prediction of softmax([10,3,1,5,5,3,1]),
the categorical cross-entropy produces the same loss for both predictions (5.0154) despite the close prediction having a higher probability near the target.

ICL instead computes the absolute error, or squared error, between each of the possible integers and the true target.
These errors are then normalised, weighted by the predicted probabilities, and summed.
I.e. integers close to the target have a lower error, and these are given greater weight in the sum if they have a higher probability.

For the example, the ICL produces a loss of 1.0007 for the close prediction, and 8.8773 for the far-off one.

	Parameters:

	
	int_probs (Tensor) – (*,integers) tensor of predicted probabilities

	target_int (Tensor) – (*) tensor of target integers

	pred_start_int (int) – the integer that the zeroth probability in predictions corresponds to

	use_mse (bool) – whether to compute errors as absolute or squared

	weight (Optional[Tensor]) – Optional (*) tensor of multiplicative weights for the unreduced ICLs

	reduction (str) – ‘mean’ return the average ICL, ‘sum’ sum the ICLs, ‘none’, return the individual ICLs

	Return type:

	Tensor

tomopt.optimisation.wrapper package

Submodules

tomopt.optimisation.wrapper.volume_wrapper module

	
class tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper(volume, *, partial_opts, loss_func=None, partial_scatter_inferrer, partial_volume_inferrer, mu_generator=None)

	Bases: object

Abstract base class for optimisation volume wrappers.
Inheriting classes will need to override _build_opt()
according to the detector parameters that need to be optimised.

Volume wrappers are designed to contain a Volume and provide means of optimising the detectors it contains,
via their fit() method.

Wrappers also provide for various quality-of-life methods, such as saving and loading detector configurations,
and computing predictions with a fixed detector (predict())

Fitting of a detector proceeds as training and validation epochs, each of which contains multiple batches of passive volumes.
For each volume in a batch, the loss is evaluated using multiple batches of muons.
The whole loop is:

	
	for epoch in n_epochs:
	
	loss = 0

	
	for p, passive in enumerate(trn_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	Backpropagate loss and update detector parameters

	loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = 0

	
	for p, passive in enumerate(val_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to val_loss

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = val_loss/p

	In implementation, the loop is broken up into several functions:
	
	_fit_epoch() runs one full epoch of volumes and updates for both training and validation

	_scan_volumes() runs over all training/validation volumes, updating parameters when necessary

	_scan_volume() irradiates a single volume with muons multiple batches, and computes the loss for that volume

The optimisation and prediction loops are supported by a stateful callback mechanism.
The base callback is Callback, which can interject at various points in the loops.
All aspects of the optimisation and prediction are stored in a FitParams data class,
since the callbacks are also stored there, and the callbacks have a reference to the wrapper, they are able to read/write to the FitParams and be
aware of other callbacks that are running.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	Parameters:

	
	volume (Volume) – the volume containing the detectors to be optimised

	partial_opts (Dict[str, Callable[[Iterator[Parameter]], Optimizer]]) – dictionary of uninitialised optimisers to be associated with the detector parameters, via _build_opt

	loss_func (Optional[AbsDetectorLoss]) – Optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	
fit(n_epochs, passive_bs, n_mu_per_volume, mu_bs, trn_passives, val_passives, cbs=None, cb_savepath=Path('train_weights'))

	Runs the fitting loop for the detectors over a specified number of epochs, using the provided volumes or volume generators.
The optimisation loop can be supported by callbacks.

	Parameters:

	
	n_epochs (int) – number of epochs to run for (a training and validation epoch only counts as one ‘epoch)

	passive_bs (int) – number of passive volumes to use per volume batch (detector updates occur after every volume batch in training mode)

	n_mu_per_volume (int) – number of muons to use in total when inferring the target of a single volume

	mu_bs (int) – number of muons to use per muon batch; multiple muon batches will be used until n_mu_per_volume is reached

	trn_passives (PassiveYielder) – passive volumes to use for optimising the detector

	val_passives (Optional[PassiveYielder]) – optional passive volumes to use for evaluating the detector

	cbs (Optional[List[Callback]]) – optional list of callbacks to use

	cb_savepath (Path) – location where callbacks should write/save any information

	Return type:

	List[Callback]

	Returns:

	The list of callbacks

	
get_detectors()

	
	Return type:

	List[AbsDetectorLayer]

	Returns:

	A list of all AbsDetectorLayer s in the volume, in the order of layers (normally decreasing z position)

	
get_opt_lr(opt)

	Returns the learning rate of the specified optimiser.

	Parameters:

	opt (str) – string name of the optimiser requested

	Return type:

	float

	Returns:

	The learning rate of the specified optimiser

	
get_opt_mom(opt)

	Returns the momentum coefficient/beta_1 of the specified optimiser.

	Parameters:

	opt (str) – string name of the optimiser requested

	Return type:

	float

	Returns:

	The momentum coefficient/beta_1 of the specified optimiser

	
get_param_count(trainable=True)

	Return number of parameters in detector.

	Parameters:

	trainable (bool) – if true (default) only count trainable parameters

	Return type:

	int

	Returns:

	Number of (trainable) parameters in detector

	
load(name)

	Loads saved volume and optimiser parameters from a file.

	Parameters:

	name (str) – file to load

	Return type:

	None

	
opts: Dict[str, Optimizer]

	

	
predict(passives, n_mu_per_volume, mu_bs, pred_cb=<tomopt.optimisation.callbacks.pred_callbacks.PredHandler object>, cbs=None, cb_savepath=Path('train_weights'))

	Uses the detectors to predict the provided volumes
The prediction loop can be supported by callbacks.

	Parameters:

	
	passives (PassiveYielder) – passive volumes to predict

	n_mu_per_volume (int) – number of muons to use in total when inferring the target of a single volume

	mu_bs (int) – number of muons to use per muon batch; multiple muon batches will be used until n_mu_per_volume is reached

	pred_cb (PredHandler) – the prediction callback to use for recording predictions

	cbs (Optional[List[Callback]]) – optional list of callbacks to use

	cb_savepath (Path) – location where callbacks should write/save any information

	Return type:

	List[Tuple[ndarray, ndarray]]

	Returns:

	The object returned by the pred_cb’s get_preds method

	
save(name)

	Saves the volume and optimiser parameters to a file.

	Parameters:

	name (str) – savename for the file

	Return type:

	None

	
set_opt_lr(lr, opt)

	Sets the learning rate of the specified optimiser.

	Parameters:

	
	lr (float) – new learning rate for the optimiser

	opt (str) – string name of the optimiser requested

	Return type:

	None

	
set_opt_mom(mom, opt)

	Sets the learning rate of the specified optimiser.

	Parameters:

	
	mom (float) – new momentum coefficient/beta_1 for the optimiser

	opt (str) – string name of the optimiser requested

	Return type:

	None

	
class tomopt.optimisation.wrapper.volume_wrapper.ArbVolumeWrapper(volume, *, opts, loss_func=None, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Bases: AbsVolumeWrapper

Arbitrary volume wrapper in which the user supplies pre-instantiated optimisers for whatever paramters should be optimised.

Wrappers also provide for various quality-of-life methods, such as saving and loading detector configurations,
and computing predictions with a fixed detector (predict())

Fitting of a detector proceeds as training and validation epochs, each of which contains multiple batches of passive volumes.
For each volume in a batch, the loss is evaluated using multiple batches of muons.
The whole loop is:

	
	for epoch in n_epochs:
	
	loss = 0

	
	for p, passive in enumerate(trn_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	Backpropagate loss and update detector parameters

	loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = 0

	
	for p, passive in enumerate(val_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to val_loss

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = val_loss/p

	In implementation, the loop is broken up into several functions:
	
	_fit_epoch() runs one full epoch of volumes
	and updates for both training and validation

	_scan_volumes() runs over all training/validation volumes,
	updating parameters when necessary

	_scan_volume() irradiates a single volume with muons multiple batches,
	and computes the loss for that volume

The optimisation and prediction loops are supported by a stateful callback mechanism.
The base callback is Callback, which can interject at various points in the loops.
All aspects of the optimisation and prediction are stored in a FitParams data class,
since the callbacks are also stored there, and the callbacks have a reference to the wrapper, they are able to read/write to the FitParams and be
aware of other callbacks that are running.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	Parameters:

	
	volume (Volume) – the volume containing the detectors to be optimised

	opts (Dict[str, Optimizer]) – Dict of strings mapping to initialised optimisers

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	
classmethod from_save(name, *, volume, opts, loss_func, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Instantiates a new PanelVolumeWrapper and loads saved detector and optimiser parameters

	Parameters:

	
	name (str) – file name with saved detector and optimiser parameters

	volume (Volume) – the volume containing the detectors to be optimised

	opts (Dict[str, Optimizer]) – Dict of strings mapping to initialised optimisers

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	Return type:

	AbsVolumeWrapper

	
class tomopt.optimisation.wrapper.volume_wrapper.FitParams(**kwargs)

	Bases: object

Data class used for storing all aspects of optimisation and prediction when working with
AbsVolumeWrapper

	Parameters:

	kwargs (Any) – objects to be stored

	
cb_savepath: Optional[Path] = None

	

	
cbs: Optional[List[Callback]] = None

	

	
cyclic_cbs: Optional[List[CyclicCallback]] = None

	

	
device: device = device(type='cpu')

	

	
epoch: int = 0

	

	
epoch_bar: Optional[ProgressBar] = None

	

	
loss_val: Optional[Tensor] = None

	

	
mean_loss: Optional[Tensor] = None

	

	
metric_cbs: Optional[List[EvalMetric]] = None

	

	
metric_log: Optional[MetricLogger] = None

	

	
mu: Optional[MuonBatch] = None

	

	
mu_bs: Optional[int] = None

	

	
n_epochs: Optional[int] = None

	

	
n_mu_per_volume: Optional[int] = None

	

	
passive_bar: Union[NBProgressBar, ConsoleProgressBar, None] = None

	

	
passive_bs: Optional[int] = None

	

	
pred: Optional[Tensor] = None

	

	
sb: Optional[ScatterBatch] = None

	

	
skip_opt_step: bool = False

	

	
state: Optional[str] = None

	

	
stop: Optional[bool] = None

	

	
trn_passives: Optional[PassiveYielder] = None

	

	
tst_passives: Optional[PassiveYielder] = None

	

	
val_passives: Optional[PassiveYielder] = None

	

	
volume_id: Optional[int] = None

	

	
volume_inferrer: Optional[AbsVolumeInferrer] = None

	

	
warmup_cbs: Optional[List[WarmupCallback]] = None

	

	
class tomopt.optimisation.wrapper.volume_wrapper.HeatMapVolumeWrapper(volume, *, mu_opt, norm_opt, sig_opt, z_pos_opt, loss_func, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Bases: AbsVolumeWrapper

Volume wrapper for volumes with DetectorHeatMap-based detectors.

Volume wrappers are designed to contain a Volume and provide means of optimising the detectors it contains,
via their fit() method.

Wrappers also provide for various quality-of-life methods, such as saving and loading detector configurations,
and computing predictions with a fixed detector (predict())

Fitting of a detector proceeds as training and validation epochs, each of which contains multiple batches of passive volumes.
For each volume in a batch, the loss is evaluated using multiple batches of muons.
The whole loop is:

	
	for epoch in n_epochs:
	
	loss = 0

	
	for p, passive in enumerate(trn_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	Backpropagate loss and update detector parameters

	loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = 0

	
	for p, passive in enumerate(val_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to val_loss

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = val_loss/p

	In implementation, the loop is broken up into several functions:
	
	_fit_epoch() runs one full epoch of volumes
	and updates for both training and validation

	_scan_volumes() runs over all training/validation volumes,
	updating parameters when necessary

	_scan_volume() irradiates a single volume with muons multiple batches,
	and computes the loss for that volume

The optimisation and prediction loops are supported by a stateful callback mechanism.
The base callback is Callback, which can interject at various points in the loops.
All aspects of the optimisation and prediction are stored in a FitParams data class,
since the callbacks are also stored there, and the callbacks have a reference to the wrapper, they are able to read/write to the FitParams and be
aware of other callbacks that are running.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	Parameters:

	
	volume (Volume) – the volume containing the detectors to be optimised

	mu_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy position of Gaussians

	norm_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the normalisation of Gaussians

	sig_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the scale of Gaussians

	z_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the z position of panels

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	
classmethod from_save(name, *, volume, mu_opt, norm_opt, sig_opt, z_pos_opt, loss_func, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Instantiates a new HeatMapVolumeWrapper and loads saved detector and optimiser parameters

	Parameters:

	
	name (str) – file name with saved detector and optimiser parameters

	volume (Volume) – the volume containing the detectors to be optimised

	mu_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy position of Gaussians

	norm_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the normalisation of Gaussians

	sig_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the scale of Gaussians

	z_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the z position of panels

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	Return type:

	AbsVolumeWrapper

	
class tomopt.optimisation.wrapper.volume_wrapper.PanelVolumeWrapper(volume, *, xy_pos_opt, z_pos_opt, xy_span_opt, budget_opt=None, loss_func=None, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Bases: AbsVolumeWrapper

Volume wrapper for volumes with DetectorPanel-based detectors.

Volume wrappers are designed to contain a Volume and provide means of optimising the detectors it contains,
via their fit() method.

Wrappers also provide for various quality-of-life methods, such as saving and loading detector configurations,
and computing predictions with a fixed detector (predict())

Fitting of a detector proceeds as training and validation epochs, each of which contains multiple batches of passive volumes.
For each volume in a batch, the loss is evaluated using multiple batches of muons.
The whole loop is:

	
	for epoch in n_epochs:
	
	loss = 0

	
	for p, passive in enumerate(trn_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	Backpropagate loss and update detector parameters

	loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = 0

	
	for p, passive in enumerate(val_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to val_loss

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = val_loss/p

	In implementation, the loop is broken up into several functions:
	
	_fit_epoch() runs one full epoch of volumes
	and updates for both training and validation

	_scan_volumes() runs over all training/validation volumes,
	updating parameters when necessary

	_scan_volume() irradiates a single volume with muons multiple batches,
	and computes the loss for that volume

The optimisation and prediction loops are supported by a stateful callback mechanism.
The base callback is Callback, which can interject at various points in the loops.
All aspects of the optimisation and prediction are stored in a FitParams data class,
since the callbacks are also stored there, and the callbacks have a reference to the wrapper, they are able to read/write to the FitParams and be
aware of other callbacks that are running.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	Parameters:

	
	volume (Volume) – the volume containing the detectors to be optimised

	xy_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy position of panels

	z_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the z position of panels

	xy_span_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy size of panels

	budget_opt (Optional[Callable[[Iterator[Parameter]], Optimizer]]) – optional uninitialised optimiser to be used for adjusting the fractional assignment of budget to the panels

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	
classmethod from_save(name, *, volume, xy_pos_opt, z_pos_opt, xy_span_opt, budget_opt=None, loss_func, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Instantiates a new PanelVolumeWrapper and loads saved detector and optimiser parameters

	Parameters:

	
	name (str) – file name with saved detector and optimiser parameters

	volume (Volume) – the volume containing the detectors to be optimised

	xy_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy position of panels

	z_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the z position of panels,

	xy_span_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy size of panels,

	budget_opt (Optional[Callable[[Iterator[Parameter]], Optimizer]]) – optional uninitialised optimiser to be used for adjusting the fractional assignment of budget to the panels

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	Return type:

	AbsVolumeWrapper

tomopt.plotting package

Submodules

tomopt.plotting.appearance module

tomopt.plotting.diagnostics module

	
tomopt.plotting.diagnostics.plot_hit_density(hit_df, savename=None)

	Plots the position of muon hits in the detectors, as recorded using HitRecord.

	Parameters:

	
	hit_df (DataFrame) – Dataframe of recorded hits, as returned by get_record()

	savename (Optional[str]) – optional savename to save the plot

	Return type:

	None

	
tomopt.plotting.diagnostics.plot_scatter_density(scatter_df, savename=None)

	Plots the position of PoCAs in the passive volume, as recorded using ScatterRecord.

	Parameters:

	
	scatter_df (DataFrame) – Dataframe of recorded PoCAs, as returned by get_record()

	savename (Optional[str]) – optional savename to save the plot

	Return type:

	None

tomopt.plotting.predictions module

	
tomopt.plotting.predictions.plot_pred_true_x0(pred, true, savename=None)

	Plots the predicted voxelwise X0s compared to the true values of the X0s.
2D plots are produced in xy for layers in z in order of increasing z, i.e. the bottom most layer is the first to be plotted.
TODO: revise this ordering to make it more intuitive

	Parameters:

	
	pred (ndarray) – (z,x,y) array of predicted X0s

	true (ndarray) – (z,x,y) array of true X0s

	savename (Optional[str]) – optional savename for saving the plot

	Return type:

	None

tomopt.volume package

Submodules

tomopt.volume.heatmap module

	
class tomopt.volume.heatmap.DetectorHeatMap(*, res, eff, init_xyz, init_xy_span, m2_cost=1, budget=None, realistic_validation=False, device=device(type='cpu'), n_cluster=30)

	Bases: Module

	
assign_budget(budget=None)

	
	Return type:

	None

	
clamp_params(musigz_low, musigz_high)

	
	Return type:

	None

	
get_cost()

	
	Return type:

	Tensor

	
get_efficiency(xy, mask=None, as_2d=False)

	
	Return type:

	Tensor

	
get_hits(mu)

	
	Return type:

	Dict[str, Tensor]

	
get_resolution(xy, mask=None)

	
	Return type:

	Tensor

	
get_xy_mask(xy)

	
	Return type:

	Tensor

	
plot_map(bpixelate=False, bsavefig=False, filename=None)

	
	Return type:

	None

	
property x: Tensor

	

	
property y: Tensor

	

tomopt.volume.layer module

	
class tomopt.volume.layer.AbsDetectorLayer(pos, *, lw, z, size, device=device(type='cpu'))

	Bases: AbsLayer

Abstract base class for layers designed to record muon positions (hits) using detectors.
Inheriting classes should override a number methods to do with costs/budgets, and hit recording.

When optimisation of operating in ‘fixed budget’ mode, the Volume will check the _n_costs class attribute of the layer
and will add this to the total number of learnable budget assignments, and pass that number of budgets as an (_n_costs) tensor.
By default this is zero, and inheriting classes should set the correct number during initialisation, or via a new default value.

Some parts of TomOpt act differently on detector layers, according to how the detectors are modelled.
A type_label attribute is used to encode extra information, rather than relying purely on the object-instance type.

Multiple detection layers can be grouped together, via their pos attribute (position); a string-encoded value.
By default, the inference methods expect detectors above the passive layer to have pos==’above’,
and those below the passive volume to have pos==’below’.
When retrieving hits from the muon batch, hits will be stacked together with other hits from the same pos.

The length and width (lw) is the spans of the layer in metres in x and y, and the layer begins at x=0, y=0.
z indicates the position of the top of the layer, in meters, and size is the distance from the top of the layer to the bottom.

Important

By default, the detectors will not scatter muons.

	Parameters:

	
	pos (str) – string-encoding of the detector-layer group

	lw (Tensor) – the length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0).

	z (float) – the z position of the top of layer in metres. The bottom of the layer will be located at z-size

	size (float) – the voxel size in metres. Must be such that lw is divisible by the specified size.

	device (device) – device on which to place tensors

	
assign_budget(budget)

	Inheriting classes should override this method to correctly assign elements of an (_n_costs) tensor to the parts of the detector to which they relate.
All ordering of the tensor is defined using the function,
but proper optimisation of the budgets may require that the same ordering is used, or that it is deterministic.

	Parameters:

	budget (Optional[Tensor]) – (_n_costs) tensor of budget assignments in unit currency

	Return type:

	None

	
conform_detector()

	Optional method designed to ensure that the detector parameters lie within any require boundaries, etc.
It will be called via the AbsVolumeWrapper after any update to the detector layers, but by default does nothing.

	Return type:

	None

	
abstract forward(mu)

	Inheriting classes should override this method to implement the passage of the muons through the layer,
and record muon positions (hits) according to the detector model.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
abstract get_cost()

	Inheriting classes should override this method to return the total, current cost of the detector(s) in the layer.

	Return type:

	Tensor

	Returns:

	Single-element tensor with the current total cost of the detector in the layer.

	
class tomopt.volume.layer.AbsLayer(lw, z, size, device=device(type='cpu'))

	Bases: Module

Abstract base class for volume layers.
The length and width (lw) is the spans of the layer in metres in x and y, and the layer begins at x=0, y=0.
z indicates the position of the top of the layer, in meters, and size is the distance from the top of the layer to the bottom.
size is also used to set the length, width, and height of the voxels that make up the layer.

Important

Users must ensure that both the length and width of the layer are divisible by size

	Parameters:

	
	lw (Tensor) – the length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0).

	z (float) – the z position of the top of layer in metres. The bottom of the layer will be located at z-size

	size (float) – the voxel size in metres. Must be such that lw is divisible by the specified size.

	device (device) – device on which to place tensors

	
abstract forward(mu)

	Inheriting classes should override this method to implement the passage of the muons through the layer.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
get_lw_z_size()

	
	Return type:

	Tuple[Tensor, Tensor, float]

	Returns:

	The length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0), the z position of the top of layer in metres, and the voxel size in metres.

	
class tomopt.volume.layer.PanelDetectorLayer(pos, *, lw, z, size, panels)

	Bases: AbsDetectorLayer

A detector layer class that uses multiple “panels” to record muon positions (hits).
Currently, two “panel” types are available: DetectorPanel and DetectorHeatMap
Each detector layer, however, should contain the same type of panel, as this is used to set the type_label of the layer.

When optimisation of operating in ‘fixed budget’ mode, the Volume will check the _n_costs class attribute of the layer
and will add this to the total number of learnable budget assignments, and pass that number of budgets as an (_n_costs) tensor.
During initialisation, this is set to the number of panels in the layer, at time of initialisation.

Multiple detection layers can be grouped together, via their pos attribute (position); a string-encoded value.
By default, the inference methods expect detectors above the passive layer to have pos==’above’,
and those below the passive volume to have pos==’below’.
When retrieving hits from the muon batch, hits will be stacked together with other hits from the same pos.

The length and width (lw) is the spans of the layer in metres in x and y, and the layer begins at x=0, y=0.
z indicates the position of the top of the layer, in meters, and size is the distance from the top of the layer to the bottom.

Important

The detector panels do not scatter muons.

	Parameters:

	
	pos (str) – string-encoding of the detector-layer group

	lw (Tensor) – the length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0).

	z (float) – the z position of the top of layer in metres. The bottom of the layer will be located at z-size

	size (float) – the voxel size in metres. Must be such that lw is divisible by the specified size.

	panels (Union[List[DetectorPanel], List[DetectorHeatMap], List[SigmoidDetectorPanel], ModuleList]) – The set of initialised panels to contain in the detector layer

	
assign_budget(budget)

	Passes elements of an (_n_costs) tensor to each of the panels’ assign_budget method.
Panels are ordered by decreasing z-position, i.e. the zeroth budget element will relate always to the highest panel,
rather than necessarily to the same panel through the optimisation process

TODO investigate whether it would be better to instead assign budgets based on a fixed ordering, rather than the z-order of the panels.

	Parameters:

	budget (Optional[Tensor]) – (_n_costs) tensor of budget assignments in unit currency

	Return type:

	None

	
conform_detector()

	Loops through panels and calls their clamp_params method, to ensure that panels are located within the bounds of the detector layer.
It will be called via the AbsVolumeWrapper after any update to the detector layers.

	Return type:

	None

	
forward(mu)

	Propagates muons to each detector panel, in order of decreasing z-position, and calls their get_hits method to record hits to the muon batch.
After this, the muons will be propagated to the bottom of the detector layer.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
get_cost()

	Returns the total, current cost of the detector(s) in the layer, as computed by looping over the panels and summing the returned values of calls to
their get_cost methods.

	Return type:

	Tensor

	Returns:

	Single-element tensor with the current total cost of the detector in the layer.

	
static get_device(panels)

	Helper method to ensure that all panels are on the same device, and return that device.
If not all the panels are on the same device, then an exception will be raised.

	Parameters:

	panels (ModuleList) – ModuleLists of either DetectorPanel or DetectorHeatMap objects on device

	Return type:

	device

	Returns:

	Device on which all the panels are.

	
get_panel_zorder()

	
	Return type:

	List[int]

	Returns:

	The indices of the panels in order of decreasing z-position.

	
yield_zordered_panels()

	Yields the index of the panel, and the panel, in order of decreasing z-position.

	Return type:

	Union[Iterator[Tuple[int, DetectorPanel]], Iterator[Tuple[int, DetectorHeatMap]]]

	Returns:

	Iterator yielding panel indices and panels in order of decreasing z-position.

	
class tomopt.volume.layer.PassiveLayer(lw, z, size, rad_length_func=None, step_sz=0.01, scatter_model='pdg', device=device(type='cpu'))

	Bases: AbsLayer

Default layer of containing passive material that scatters the muons.
The length and width (lw) is the spans of the layer in metres in x and y, and the layer begins at x=0, y=0.
z indicates the position of the top of the layer, in meters, and size is the distance from the top of the layer to the bottom.
size is also used to set the length, width, and height of the voxels that make up the layer.

Important

Users must ensure that both the length and width of the layer are divisible by size

	If the layer is set to scatter muons (rad_length is not None), then two scattering models are available:
	
	‘pdg’: The default and currently recommended model based on the Gaussian scattering model described in https://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf

	‘pgeant’: An under-development model based on a parameterised fit to data sampled from GEANT 4

The X0 values of each voxel is defined via a “radiation-length function”, which should return an (n_x,n_y) tensor of voxel X0 values,
when called with the z, lw, and size of the layer. For example:

def arb_rad_length(*, z: float, lw: Tensor, size: float) -> float:
 rad_length = torch.ones(list((lw / size).long())) * X0["lead"]
 if z < 0.5:
 rad_length[...] = X0["beryllium"]
 return rad_length

This function can either be supplied during initialisation, or later via the load_rad_length method.

	Parameters:

	
	lw (Tensor) – the length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0).

	z (float) – the z position of the top of layer in metres. The bottom of the layer will be located at z-size

	size (float) – the voxel size in metres. Must be such that lw is divisible by the specified size.

	rad_length_func (Optional[Callable[[Tensor, Tensor, float], Tensor]]) – lookup function that returns an (n_x,n_y) tensor of voxel X0 values for the layer.
After initialisation, the load_rad_length method may be used to load X0 layouts.

	step_sz (float) – The step size in metres over which to compute muon propagation and scattering.

	scatter_model (str) – String selection for the scattering model to use. Currently either ‘pdg’ or ‘pgeant’.

	device (device) – device on which to place tensors

	
abs2idx(xy)

	Helper method to return the voxel indices in the layer of the supplied tensor of xy positions.

Warning

This method does NOT account for the possibility of positions may be outside the layer.
Please ensure that positions are inside the layer.

	Parameters:

	xy (Tensor) – (N,xy) tensor of absolute xy positions in metres in the volume frame

	Return type:

	Tensor

	Returns:

	(N,xy) tensor of voxel indices in x,y

	
forward(mu)

	Propagates the muons through the layer to the bottom in a series of scattering steps.
If the ‘pdg’ model is used, then the step size is the step_sz of the layer, as supplied during initialisation.
If the ‘pgeant’ model is used, the the step size specified as part of the fitting of the scattering model.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
load_rad_length(rad_length_func)

	Loads a new X0 layout into the layer voxels.

	Parameters:

	rad_length_func (Callable[[Tensor, Tensor, float], Tensor]) – lookup function that returns an (n_x,n_y) tensor of voxel X0 values for the layer.

	Return type:

	None

	
mu_abs2idx(mu, mask=None)

	Helper method to return the voxel indices in the layer that muons currently occupy.

Warning

This method does NOT account for the possibility of muons being outside the layer.
Please also supply a mask, to only select muons inside the layer.

	Parameters:

	
	mu (MuonBatch) – muons to look up

	mask (Optional[Tensor]) – Optional (muons) Boolean tensor where True indicates that the muon position should be checked

	Return type:

	Tensor

	Returns:

	(muons,2) tensor of voxel indices in x,y

	
scatter_and_propagate(mu, mask=None)

	Propagates the muons through (part of) the layer by the prespecified step_sz.
If the layer is set to scatter muons (rad_length is not None),
then the muons will also undergo scattering (changes in their trajectories and positions) according to the scatter model of the layer.

Warning

When computing scatterings, the X0 used for each muon is that of the starting voxel:
If a muon moves into a neighbouring voxel of differing X0, then this will only be accounted for in the next step.

	Parameters:

	
	mu (MuonBatch) – muons to propagate

	mask (Optional[Tensor]) – Optional (N,) Boolean mask. Only muons with True values will be scattered and propagated

	Return type:

	None

tomopt.volume.panel module

	
class tomopt.volume.panel.DetectorPanel(*, res, eff, init_xyz, init_xy_span, m2_cost=1, budget=None, realistic_validation=True, device=device(type='cpu'))

	Bases: Module

Provides an infinitely thin, rectangular panel in the xy plane, centred at a learnable xyz position (metres, in absolute position in the volume frame),
with a learnable width in x and y (xy_span).
Whilst this class can be used manually, it is designed to be used by the PanelDetectorLayer class.

Despite inheriting from nn.Module, the forward method should not be called, instead passing a MuonBatch to the
get_hits method will return hits corresponding to the muons.

During training model (.train() or .training is True), a continuous model of the resolution and efficiency will be used, such that hits are differentiable w.r.t.
the learnable parameters of the panel. This means that muons outside of the physical panel will have hits at non-zero resolution.
The current model is a 2D uncorrelated Gaussian in xy, centred over the panel, with width parameters equal to the xy_spans/4,
i.e. the panel is 4-sigma across.

Efficiency is accounted for via a weighting approach, rather than deciding whether to record hits or not, i.e. muons will always record hits,
but the probability of the hit actually being recorded is computable.

During evaluation mode (.eval() or .training is False), if the panel is set to use realistic_validation, then the physical panel will be simulated:
Muons outside the panel have zero resolution and efficiency, resulting in NaN hits positions.
Muons inside the panel will have the full resolution and efficiency of the panel,
but hits will not be differentiable w.r.t. the panel xy-position or xy-span.
If realistic_validation is False, then the continuous model will be used also in evaluation mode.

The cost of the panel is based on the supplied cost per metre squared, and the current area of the panel, according to its learnt xy-span.
Panels can also be run in “fixed-budget” mode, in which a cost of the panel is specified via the .assign_budget method.
Based on the cost per m^2, the panel will change in effective width, based on its learn xy_span (now an aspect ratio), such that its area results in a cost
equal to the specified cost of the panel.

The resolution and efficiency remain fixed at the specified values.
If intending to run in “fixed-budget” mode, then a budget can be specified here,
however the :class”~tomopt.volume.volume.Volume class will pass through all panels and initialise their budgets.

	Parameters:

	
	res (float) – resolution of the panel in m^-1, i.e. a higher value improves the precision on the hit recording

	eff (float) – efficiency of the hit recording of the panel, indicated as a probability [0,1]

	init_xyz (Tuple[float, float, float]) – initial xyz position of the panel in metres in the volume frame

	init_xy_span (Tuple[float, float]) – initial xy-span (total width) of the panel in metres

	m2_cost (float) – the cost in unit currency of the 1 square metre of detector

	budget (Optional[Tensor]) – optional required cost of the panel. Based on the span and cost per m^2, the panel will resize to meet the required cost

	realistic_validation (bool) – if True, will use the physical interpretation of the panel during evaluation

	device (device) – device on which to place tensors

	
assign_budget(budget=None)

	Sets the budget for the panel. This is then used to set a multiplicative coefficient, budget_scale, based on the m2_cost
which rescales the xy_span such that the area of the resulting panel matches the assigned budget.

	Parameters:

	budget (Optional[Tensor]) – required cost of the panel in unit currency

	Return type:

	None

	
clamp_params(xyz_low, xyz_high)

	Ensures that the panel is centred within the supplied xyz range,
and that the span of the panel is between xyz_high/20 and xyz_high*10.
A small random number < 1e-3 is added/subtracted to the min/max z position of the panel, to ensure it doesn’t overlap with other panels.

	Parameters:

	
	xyz_low (Tuple[float, float, float]) – minimum x,y,z values for the panel centre in metres

	xyz_high (Tuple[float, float, float]) – maximum x,y,z values for the panel centre in metres

	Return type:

	None

	
forward()

	Define the computation performed at every call.

Should be overridden by all subclasses.
:rtype: None

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
get_cost()

	
	Return type:

	Tensor

	Returns:

	current cost of the panel according to its area and m2_cost

	
get_efficiency(xy, mask=None)

	Computes the efficiency of panel at the supplied list of xy points.
If running in evaluation mode with realistic_validation,
then these will be the full efficiency of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Gaussian model will be used.

	Parameters:

	
	xy (Tensor) – (N,) or (N,xy) tensor of positions

	mask (Optional[Tensor]) – optional pre-computed (N,) Boolean mask, where True indicates that the xy point is inside the panel.
Only used in evaluation mode and if realistic_validation is True.
If required, but not supplied, than will be computed automatically.

	Return type:

	Tensor

	Returns:

	eff, a (N,)tensor of the efficiency at the xy points

	
get_gauss()

	
	Return type:

	Normal

	Returns:

	A Gaussian distribution, with 2 uncorrelated components corresponding to x and y, centred at the xy position of the panel, and sigma = panel span/4

	
get_hits(mu)

	
	Return type:

	Dict[str, Tensor]

The main interaction method with the panel: returns hits for the supplied muons.
Hits consist of:

reco_xy: (muons,xy) tensor of reconstructed xy positions of muons included simulated resolution
gen_xy: (muons,xy) tensor of generator-level (true) xy positions of muons
z: z position of the panel

If running in evaluation mode with realistic_validation,
then these will be the full resolution of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Gaussian model will be used.

	
get_resolution(xy, mask=None)

	Computes the xy resolutions of panel at the supplied list of xy points.
If running in evaluation mode with realistic_validation,
then these will be the full resolution of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Gaussian model will be used.

	Parameters:

	
	xy (Tensor) – (N,xy) tensor of positions

	mask (Optional[Tensor]) – optional pre-computed (N,) Boolean mask, where True indicates that the xy point is inside the panel.
Only used in evaluation mode and if realistic_validation is True.
If required, but not supplied, than will be computed automatically.

	Return type:

	Tensor

	Returns:

	res, a (N,xy) tensor of the resolution at the xy points

	
get_scaled_xy_span()

	Computes the effective size of the panel by rescaling based on the xy-span, cost per m^2, and budget.

	Return type:

	Tensor

	Returns:

	Rescaled xy-span such that the panel has a cost equal to the specified budget

	
get_xy_mask(xy)

	Computes which of the xy points lie inside the physical panel.

	Parameters:

	xy (Tensor) – xy2) tensor of points

	Return type:

	Tensor

	Returns:

	(N,) Boolean mask, where True indicates the point lies inside the panel

	
property x: Tensor

	

	
property y: Tensor

	

	
class tomopt.volume.panel.SigmoidDetectorPanel(*, smooth, res, eff, init_xyz, init_xy_span, m2_cost=1, budget=None, realistic_validation=True, device=device(type='cpu'))

	Bases: DetectorPanel

Provides an infinitely thin, rectangular panel in the xy plane, centred at a learnable xyz position (metres, in absolute position in the volume frame),
with a learnable width in x and y (xy_span).
Whilst this class can be used manually, it is designed to be used by the PanelDetectorLayer class.

Despite inheriting from nn.Module, the forward method should not be called, instead passing a MuonBatch to the
get_hits method will return hits corresponding to the muons.

During training model (.train() or .training is True), a continuous model of the resolution and efficiency will be used, such that hits are
differentiable w.r.t. the learnable parameters of the panel. This means that muons outside of the physical panel will have hits at non-zero resolution.
The model is a 2D uncorrelated Sigmoid in xy, centred over the panel, which pass 0.5 at the xy_spans/2.
The smoothness of the sigmoid affects the rate of change of resolution|efficiency near the edge of the physical border:
A higher smooth value provides a slower change, with higher resolution|efficiency outside the physical panel, whereas a lower smooth value provides a
sharper transition, with lower sensitivity to muons outside the panel (and therefore more strongly approximated a physical panel).
The SigmoidPanelSmoothnessSchedule can be used to anneal this smoothness during optimisation.

Efficiency is accounted for via a weighting approach, rather than deciding whether to record hits or not, i.e. muons will always record hits,
but the probability of the hit actually being recorded is computable.

During evaluation mode (.eval() or .training is False), if the panel is set to use realistic_validation, then the physical panel will be simulated:
Muons outside the panel have zero resolution and efficiency, resulting in NaN hits positions.
Muons inside the panel will have the full resolution and efficiency of the panel,
but hits will not be differentiable w.r.t. the panel xy-position or xy-span.
If realistic_validation is False, then the continuous model will be used also in evaluation mode.

The cost of the panel is based on the supplied cost per metre squared, and the current area of the panel, according to its learnt xy-span.
Panels can also be run in “fixed-budget” mode, in which a cost of the panel is specified via the .assign_budget method.
Based on the cost per m^2, the panel will change in effective width, based on its learn xy_span (now an aspect ratio), such that its area results in a cost
equal to the specified cost of the panel.

The resolution and efficiency remain fixed at the specified values.
If intending to run in “fixed-budget” mode, then a budget can be specified here,
however the :class”~tomopt.volume.volume.Volume class will pass through all panels and initialise their budgets.

	Parameters:

	
	smooth (Union[float, Tensor]) – smoothness of the sigmoid: A higher smooth value provides a slower change, with higher resolution|efficiency outside the physical panel,
whereas a lower smooth value provides a sharper transition, with lower sensitivity to muons outside the panel
(and therefore more strongly approximated a physical panel).

	res (float) – resolution of the panel in m^-1, i.e. a higher value improves the precision on the hit recording

	eff (float) – efficiency of the hit recording of the panel, indicated as a probability [0,1]

	init_xyz (Tuple[float, float, float]) – initial xyz position of the panel in metres in the volume frame

	init_xy_span (Tuple[float, float]) – initial xy-span (total width) of the panel in metres

	m2_cost (float) – the cost in unit currency of the 1 square metre of detector

	budget (Optional[Tensor]) – optional required cost of the panel. Based on the span and cost per m^2, the panel will resize to meet the required cost

	realistic_validation (bool) – if True, will use the physical interpretation of the panel during evaluation

	device (device) – device on which to place tensors

	
get_efficiency(xy, mask=None)

	Computes the efficiency of panel at the supplied list of xy points.
If running in evaluation mode with realistic_validation,
then these will be the full efficiency of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Sigmoid model will be used.

	Parameters:

	
	xy (Tensor) – (N,) or (N,xy) tensor of positions

	mask (Optional[Tensor]) – optional pre-computed (N,) Boolean mask, where True indicates that the xy point is inside the panel.
Only used in evaluation mode and if realistic_validation is True.
If required, but not supplied, than will be computed automatically.

	Return type:

	Tensor

	Returns:

	eff, a (N,)tensor of the efficiency at the xy points

	
get_resolution(xy, mask=None)

	Computes the xy resolutions of panel at the supplied list of xy points.
If running in evaluation mode with realistic_validation,
then these will be the full resolution of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Sigmoid model will be used.

	Parameters:

	
	xy (Tensor) – (N,xy) tensor of positions

	mask (Optional[Tensor]) – optional pre-computed (N,) Boolean mask, where True indicates that the xy point is inside the panel.
Only used in evaluation mode and if realistic_validation is True.
If required, but not supplied, than will be computed automatically.

	Return type:

	Tensor

	Returns:

	res, a (N,xy) tensor of the resolution at the xy points

	
sig_model(xy)

	Models fractional resolution and efficiency from a sigmoid-based model to provide a smooth and differentiable model of a physical detector-panel.

	Parameters:

	xy (Tensor) – (N,xy) tensor of positions

	Return type:

	Tensor

	Returns:

	Multiplicative coefficients for the nominal resolution or efficiency of the panel based on the xy position relative to the panel position and size

	
property smooth: Tensor

	

tomopt.volume.scatter_model module

tomopt.volume.volume module

	
class tomopt.volume.volume.Volume(layers, budget=None)

	Bases: Module

The Volume class is used to contain both passive layers and detector layers.
It is designed to act as an interface to them for the convenience of e.g. VolumeWrapper,
and to allow new passive-volume layouts to be loaded.

When optimisation is acting in fixed-budget mode, the volume is also responsible for learning the optimal assignments of the budget to detector parts.

Volumes can also have a “target” value. This could be e.g. the class ID of the passive-volume configuration which is currently loaded.
See e.g. VolumeClassLoss.
The target can be set as part of the call to load_rad_length()

The volume is expected to have its low-left-front (zxy) corner located at (0,0,0) metres.

Important

Currently this class expects that all PassiveLayer s form a single contiguous block,
i.e. it does not currently support sparse, or multiple, passive volumes.

	Parameters:

	
	layers (ModuleList) – torch.nn.ModuleList of instantiated AbsLayer s, ordered in decreasing z position.

	budget (Optional[float]) – optional budget of the detector in currency units.
Supplying a value for the optional budget, here, will prepare the volume to learn budget assignments to the detectors,
and configure the detectors for the budget.

	
assign_budget()

	Distributed the total budget for the detector system amongst the various sub-detectors.
When assigning budgets to layers, the budget weights are softmax-normalised to one, and multiplied by the total budget.
Slices of these budgets are then passed to the layers, with the length of the slices being taken from _n_layer_costs.

	Return type:

	None

	
build_xyz_edges()

	Computes the xyz locations of low-left-front edges of voxels in the passive layers of the volume.

	Return type:

	Tensor

	
property device: device

	

	
draw(*, xlim, ylim, zlim)

	Draws the layers/panels pertaining to the volume.
When using this in a jupyter notebook, use “%matplotlib notebook” to have an interactive plot that you can rotate.

	Parameters:

	
	xlim (Tuple[float, float]) – the x axis range for the three-dimensional plot.

	ylim (Tuple[float, float]) – the y axis range for the three-dimensional plot.

	zlim (Tuple[float, float]) – the z axis range for the three-dimensional plot.

	Return type:

	None

	
forward(mu)

	Propagates muons through each layer in turn.
Prior to propagating muons, the assign_budget() method is called.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
get_cost()

	
	Return type:

	Tensor

	Returns:

	
	The total, current cost of the layers in the volume,
	or the assigned budget for the volume (these two values should be the same but, the actual cost won’t be evaluated explicitly)

	
get_detectors()

	
	Return type:

	List[AbsDetectorLayer]

	Returns:

	A list of all AbsDetectorLayer s in the volume, in the order of layers (normally decreasing z position)

	
get_passive_z_range()

	
	Return type:

	Tuple[Tensor, Tensor]

	Returns:

	The z position of the bottom of the lowest passive layer, and the z position of the top of the highest passive layer.

	
get_passives()

	
	Return type:

	List[PassiveLayer]

	Returns:

	A list of all PassiveLayer s in the volume, in the order of layers (normally decreasing z position)

	
get_rad_cube()

	
	Return type:

	Tensor

	Returns:

	zxy tensor of the values stored in the voxels of the passive volume, with the lowest layer being found in the zeroth z index position.

	
property h: Tensor

	Returns:
The height of the volume (including both passive and detector layers), as computed from the z position of the zeroth layer.

	
load_rad_length(rad_length_func, target=None)

	Loads a new passive-volume configuration.
Optionally, a “target” for the configuration may also be supplied.
This could be e.g. the class ID of the passive-volume configuration which is currently loaded.
See e.g. VolumeClassLoss.

	Parameters:

	
	rad_length_func (Callable[[Tensor, Tensor, float], Tensor]) – lookup function that returns an (n_x,n_y) tensor of voxel X0 values for the layer.

	target (Optional[Tensor]) – optional target for the new layout

	Return type:

	None

	
lookup_passive_xyz_coords(xyz)

	Looks up the voxel indices of the supplied list of absolute positions in the volume frame

Warning

Assumes the same size for all passive layers, and that they form a single contiguous block

	Parameters:

	xyz (Tensor) – an (N,xyz) tensor of absolute positions in the volume frame

	Return type:

	Tensor

	Returns:

	an (N,xyz) tensor of zero-ordered voxel indices, which correspond to the supplied positions

	
property lw: Tensor

	Returns:
The length and width of the passive volume

	
property passive_size: float

	Returns:
The size of voxels in the passive volume

	
property target: Tensor | None

	Returns:
The “target” value of the volume. This could be e.g. the class ID of the passive-volume configuration which is currently loaded.
See e.g. VolumeClassLoss.
The target can be set as part of the call to load_rad_length()

	
property xyz_centres: Tensor

	xyz locations of the centres of voxels in the passive layers of the volume.

	
property xyz_edges: Tensor

	xyz locations of low-left-front edges of voxels in the passive layers of the volume.

tomopt.muon package

Submodules

tomopt.muon.generation module

	
class tomopt.muon.generation.AbsMuonGenerator(x_range, y_range, fixed_mom=5.0, energy_range=(0.5, 500), theta_range=(0, 1.2217304763960306))

	Bases: object

Abstract generator base class implementing core functionality.
Inheriting classes should override the flux method.

Once initialised, the object can be called, or it’s generate_set method called, to generate a set of initial muon kinematics.
Each muon will have a starting x and y position sampled uniformly within a defined region.
Theta and momentum will be defined by sampling the defined flux model.

	Parameters:

	
	x_range (Tuple[float, float]) – range in metres of the absolute initial x-position in the volume reference frame over which muons can be generated

	y_range (Tuple[float, float]) – range in metres of the absolute initial y-position in the volume reference frame over which muons can be generated

	fixed_mom (Optional[float]) – if not None, will only generate muons with the specified momentum in GeV

	energy_range (Tuple[float, float]) – if fixed_mom is None, muons will have initial momentum sampled according to the flux model in the specified range in GeV

	theta_range (Tuple[float, float]) – muons will have initial theta sampled according to the flux model in the specified range in radians

	
abstract flux(energy, theta)

	Inheriting classes should override this to implement their flux model for the supplied pairs of energies and thetas

	Parameters:

	
	energy (Union[float, ndarray]) – energy values at which to compute the flux, in GeV

	theta (Union[float, ndarray]) – theta values at which to compute the flux, in radians

	Return type:

	Union[float, ndarray]

	Returns:

	muon flux for every energy & theta pair

	
classmethod from_volume(volume, min_angle=0.2617993877991494, fixed_mom=5.0, energy_range=(0.5, 500), theta_range=(0, 1.2217304763960306))

	Class method to initialise x and y ranges of muon generation from the passive volume.
Heuristically computes x,y generation range as (0-d,x+d), (0-d,y+d).
Where d is such that a muon generated at (0-d,1) will only hit the last layer of the passive volume if it’s initial angle is at least min_angle.
This balances a trade-off between generation efficiency and generator realism.

	Parameters:

	
	volume (Volume) – Volume through which the muons will pass

	min_angle (float) – the minimum theta angle that a muon generated at the extreme x or y boundary would require to hit at least the last passive layer of the
passive volume, if it’s phi angle were to point directly towards the passive volume.

	fixed_mom (Optional[float]) – if not None, will only generate muons with the specified momentum in GeV

	energy_range (Tuple[float, float]) – if fixed_mom is None, muons will have initial momentum sampled according to the flux model in the specified range in GeV

	theta_range (Tuple[float, float]) – muons will have initial theta sampled according to the flux model in the specified range in radians

	Return type:

	AbsMuonGenerator

	
generate_set(n_muons)

	Generates a set of muons as a rank-2 tensor of shape (n_muons, 5), with initial kinematic variables [x, y, momentum, theta, phi].
Theta and, optionally, momentum are sampled from the flux model. x and y are sampled uniformly from the defined ranges.
Phi is sampled uniformly from [0,2pi].

	Parameters:

	n_muons (int) – number of muons to generate

	Return type:

	Tensor

	Returns:

	Rank-2 tensor of shape (n_muons, 5), with initial kinematic variables [x, y, momentum, theta, phi]

	
class tomopt.muon.generation.MuonGenerator2015(x_range, y_range, fixed_mom=5.0, energy_range=(0.5, 500), theta_range=(0, 1.2217304763960306))

	Bases: AbsMuonGenerator

Provides muon generator for sampling initial muon kinematics according to Guan et al. 2015 (arXiv:1509.06176).

Once initialised, the object can be called, or it’s generate_set method called, to generate a set of initial muon kinematics.
Each muon will have a starting x and y position sampled uniformly within a defined region.
Theta and momentum will be defined by sampling the defined flux model.

	Parameters:

	
	x_range (Tuple[float, float]) – range in metres of the absolute initial x-position in the volume reference frame over which muons can be generated

	y_range (Tuple[float, float]) – range in metres of the absolute initial y-position in the volume reference frame over which muons can be generated

	fixed_mom (Optional[float]) – if not None, will only generate muons with the specified momentum in GeV

	energy_range (Tuple[float, float]) – if fixed_mom is None, muons will have initial momentum sampled according to the flux model in the specified range in GeV

	theta_range (Tuple[float, float]) – muons will have initial theta sampled according to the flux model in the specified range in radians

	
P1 = 0.102573

	

	
P2 = -0.068287

	

	
P3 = 0.958633

	

	
P4 = 0.0407253

	

	
P5 = 0.817285

	

	
flux(energy, theta)

	Function returning modified Gaisser formula for cosmic muon flux given energy (float/np.array) and incidence angle (float/np.array)
Uses model defined in Guan et al. 2015 (arXiv:1509.06176)

	Parameters:

	
	energy (Union[float, ndarray]) – energy values at which to compute the flux, in GeV

	theta (Union[float, ndarray]) – theta values at which to compute the flux, in radians

	Return type:

	Union[float, ndarray]

	Returns:

	muon flux for every energy & theta pair

	
class tomopt.muon.generation.MuonGenerator2016(x_range, y_range, fixed_mom=5.0, energy_range=(0.5, 500), theta_range=(0, 1.2217304763960306))

	Bases: AbsMuonGenerator

Provides muon generator for sampling initial muon kinematics according to Shukla and Sanskrith 2018 arXiv:1606.06907

Once initialised, the object can be called, or it’s generate_set method called, to generate a set of initial muon kinematics.
Each muon will have a starting x and y position sampled uniformly within a defined region.
Theta and momentum will be defined by sampling the defined flux model.

	Parameters:

	
	x_range (Tuple[float, float]) – range in metres of the absolute initial x-position in the volume reference frame over which muons can be generated

	y_range (Tuple[float, float]) – range in metres of the absolute initial y-position in the volume reference frame over which muons can be generated

	fixed_mom (Optional[float]) – if not None, will only generate muons with the specified momentum in GeV

	energy_range (Tuple[float, float]) – if fixed_mom is None, muons will have initial momentum sampled according to the flux model in the specified range in GeV

	theta_range (Tuple[float, float]) – muons will have initial theta sampled according to the flux model in the specified range in radians

	
E_0 = 3.87

	

	
E_c = 0.5

	

	
I_0 = 88.0

	

	
N = 38.1938

	

	
Rod = 174.0

	

	
epinv = 0.00117096018735363

	

	
flux(energy, theta)

	Function returning modified Gaisser formula for cosmic muon flux given energy (float/np.array) and incidence angle (float/np.array)
Uses model defined in Shukla and Sanskrith 2018 arXiv:1606.06907

	Parameters:

	
	energy (Union[float, ndarray]) – energy values at which to compute the flux, in GeV

	theta (Union[float, ndarray]) – theta values at which to compute the flux, in radians

	Return type:

	Union[float, ndarray]

	Returns:

	muon flux for every energy & theta pair

	
n = 3

	

tomopt.muon.muon_batch module

	
class tomopt.muon.muon_batch.MuonBatch(xy_p_theta_phi, init_z, device=device(type='cpu'))

	Bases: object

Container class for a batch of many muons, defined by their position and kinematics.

	Each muon has its own:
	
	x, y, and z position in metres, which are absolute coordinates in the volume frame.

	theta, the angle in radians [0,pi) between the muon trajectory and the negative z-axis in the volume frame muons with a theta > pi/2 (i.e. travel upwards) may be removed automatically

	phi, the anticlockwise angle in radians [0,2pi) between the muon trajectory and the positive x-axis, in the x-y plane of the volume frame.

	momentum (mom), the absolute value of the muon momentum in GeV

	Muon properties should not be updated manually. Instead, call:
	
	.propagate_dz_dz(dz) to update the x,y,z positions of the muons for a given propagation dz in the z-axis.

	.propagate_dz_d(d) to update the x,y,z positions of the muons for a given propagation d in the muons’ trajectories.

	.scatter_dxy(dx_vol, dy_vol, mask) to shift the x,y positions of the muons, for which the values of the optional Boolean mask is true, by the specified amount.

	.scatter_dtheta_dphi(dtheta_vol, dphi_vol, mask) to alter the theta,phi angles of the muons, for which the values of the optional Boolean mask is true, by the specified amount.

Important

Muon momenta is currently constant

Important

Eventually the muon batch will be extended to store information about the inferred momentum of the muons reco_mom.
However currently the reco_mom property will return the TRUE momentum of the muons, with no simulation of measurement precision.

By default, the MuonBatch class only contains the current position of the muons,
however the .snapshot_xyz method can be used to store the xy positions of the muons at any time, to a dictionary with float z-position keys, xyz_hist.

In addition to storing the properties of the muons, the MuonBatch class is also used to store the detector hits associated with each muon.
Hits may be added via the .append_hits method, and stored in the _hits attribute.
Hits can then be retrieved by the .get_hits method.

	Parameters:

	
	xy_p_theta_phi (Tensor) – (N_muon, 5) tensor,
with xy [m], p [GeV], theta [r] (0, pi/2) defined w.r.t z axis, phi [r] (0, 2pi) defined anticlockwise from x axis

	init_z (Union[Tensor, float]) – initial z position of all muons in the batch

	device (device) – device on which to place the muon tensors

	
append_hits(hits, pos)

	Record hits to _hits.

	Parameters:

	
	hits (Dict[str, Tensor]) – dictionary of ‘reco_xy’, ‘gen_xy’, ‘z’ keys to (muons, *) tensors.

	pos (str) – Position of detector array in which the hits were recorded, currently either ‘above’ or ‘below’.

	Return type:

	None

	
copy()

	Creates a copy of the muon batch at the current position and trajectories.
Tensors are detached and cloned.

Important

This does NOT copy of hits

	Return type:

	MuonBatch

	Returns:

	New MuonBatch with xyz, and theta,phi equal to those of the current MuonBatch.

	
dtheta(theta_ref)

	Computes absolute difference in the theta between the muons and the supplied theta angles

	Parameters:

	theta_ref (Tensor) – (N,) tensor to compare with the muon theta values

	Return type:

	Tensor

	Returns:

	Absolute difference between muons’ theta and the supplied reference theta

	
dtheta_x(theta_ref_x)

	Computes absolute difference in the theta_x between the muons and the supplied theta_x angles

	Parameters:

	theta_ref_x (Tensor) – (N,) tensor to compare with the muon theta_x values

	Return type:

	Tensor

	Returns:

	Absolute difference between muons’ theta_x and the supplied reference theta_x

	
dtheta_y(theta_ref_y)

	Computes absolute difference in the theta_y between the muons and the supplied theta_y angles

	Parameters:

	theta_ref_y (Tensor) – (N,) tensor to compare with the muon theta_y values

	Return type:

	Tensor

	Returns:

	Absolute difference between muons’ theta_y and the supplied reference theta_y

	
filter_muons(keep_mask)

	Removes all muons, and their associated hits, except for muons specified as True in keep_mask.

	Parameters:

	keep_mask (Tensor) – (N,) Boolean tensor. Muons with False elements will be removed, along with their hits.

	Return type:

	None

	
get_hits(xy_low=None, xy_high=None)

	Retrieve the recorded hits for the muons, optionally only for muons between the specified xy ranges.
For ease of use, the list of hits are stacked into single tensors, resulting in
a dictionary mapping detector-array position to a dictionary mapping hit variables to (N_muons, N_hits, *) tensors.

	Parameters:

	
	xy_low (Union[Tuple[float, float], Tensor, None]) – (2,N) optional lower limit on xy positions

	xy_high (Union[Tuple[float, float], Tensor, None]) – (2,N) optional upper limit on xy positions

	Return type:

	Dict[str, Dict[str, Tensor]]

	Returns:

	Hits, a dictionary mapping detector-array position to a dictionary mapping hit variables to (N_muons, N_hits, *) tensors.

	
get_xy_mask(xy_low, xy_high)

	Computes a (N,) Boolean tensor, with True values corresponding to muons which are within the supplied ranges in xy.

	Parameters:

	
	xy_low (Union[Tuple[float, float], Tensor, None]) – (2,N) optional lower limit on xy positions

	xy_high (Union[Tuple[float, float], Tensor, None]) – (2,N) optional upper limit on xy positions

	Return type:

	Tensor

	Returns:

	(N,) Boolean mask with True values corresponding to muons which are with xy positions >= xy_low and < xy_high

	
property mom: Tensor

	

	
property muons: Tensor

	

	
p_dim = 3

	

	
ph_dim = 5

	

	
property phi: Tensor

	

	
static phi_from_theta_xy(theta_x, theta_y)

	Computes the phi angle from theta_x and theta_y.

Important

This function does NOT work if theta is > pi/2

	Parameters:

	
	theta_x (Tensor) – angle from the negative z-axis in the xz plane

	theta_y (Tensor) – angle from the negative z-axis in the yz plane

	Return type:

	Tensor

	Returns:

	phi, the anti-clockwise angle from the positive x axis, in the xy plane

	
propagate_d(d, mask=None)

	Propagates all muons in their direction of flight by the specified distances.

	Parameters:

	
	d (Union[Tensor, float]) – (1,) or (N,) distance(s) in metres to move.

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are altered.

	Return type:

	None

	
propagate_dz(dz, mask=None)

	Propagates all muons in their direction of flight such that afterwards they will all have moved a specified distance in the negative z direction.

	Parameters:

	
	dz (Union[Tensor, float]) – distance in metres to move in the negative z direction, i.e. a positive dz results in the muons travelling downwards.

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are altered.

	Return type:

	None

	
property reco_mom: Tensor

	

	
remove_upwards_muons()

	Removes muons, and their hits, if their theta >= pi/2, i.e. they are travelling upwards after a large scattering.
Should be run after any changes to theta, but make sure that references (e.g. masks) to the complete set of muons are no longer required.

	Return type:

	None

	
scatter_dtheta_dphi(dtheta_vol=None, dphi_vol=None, mask=None)

	Changes the trajectory of the muons in theta-phi by the specified amounts, with no change in their x,y,z positions.
If a mask is supplied, then only muons with True mask elements are altered.

	Parameters:

	
	dtheta_vol (Optional[Tensor]) – (N,) tensor of angular changes in theta

	dphi_vol (Optional[Tensor]) – (N,) tensor of angular changes in phi

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are altered.

	Return type:

	None

	
scatter_dtheta_xy(dtheta_x_vol=None, dtheta_y_vol=None, mask=None)

	Changes the trajectory of the muons in theta-phi by the specified amounts in dtheta_xy, with no change in their x,y,z positions.
If a mask is supplied, then only muons with True mask elements are altered.

	Parameters:

	
	dtheta_x_vol (Optional[Tensor]) – (N,) tensor of angular changes in theta_x

	dtheta_y_vol (Optional[Tensor]) – (N,) tensor of angular changes in theta_y

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are altered.

	Return type:

	None

	
scatter_dxyz(dx_vol=None, dy_vol=None, dz_vol=None, mask=None)

	Displaces the muons in xyz by the specified amounts.
If a mask is supplied, then only muons with True mask elements are displaced.

	Parameters:

	
	dx_vol (Optional[Tensor]) – (N,) tensor of displacements in x

	dy_vol (Optional[Tensor]) – (N,) tensor of displacements in y

	dz_vol (Optional[Tensor]) – (N,) tensor of displacements in z

	mask (Optional[Tensor]) – (N,) Boolean tensor. If not None, only muons with True mask elements are displaced.

	Return type:

	None

	
snapshot_xyz()

	Store the current xy positions of the muons in .xyz_hist, indexed by the current z position.

	Return type:

	None

	
th_dim = 4

	

	
property theta: Tensor

	

	
static theta_from_theta_xy(theta_x, theta_y)

	Computes the theta angle from theta_x and theta_y.

Important

This function does NOT work if theta is > pi/2

	Parameters:

	
	theta_x (Tensor) – angle from the negative z-axis in the xz plane

	theta_y (Tensor) – angle from the negative z-axis in the yz plane

	Return type:

	Tensor

	Returns:

	theta, the anti-clockwise angle from the negative z axis, in the xyz plane

	
property theta_x: Tensor

	

	
static theta_x_from_theta_phi(theta, phi)

	Computes the angle from the negative z-axis in the xz plane from theta and phi

Important

This function does NOT work if theta is > pi/2

	Parameters:

	
	theta (Tensor) – the anti-clockwise angle from the negative z axis, in the xyz plane

	phi (Tensor) – the anti-clockwise angle from the positive x axis, in the xy plane

	Return type:

	Tensor

	Returns:

	theta_x, the angle from the negative z-axis in the xz plane

	
property theta_xy: Tensor

	

	
property theta_y: Tensor

	

	
static theta_y_from_theta_phi(theta, phi)

	Computes the angle from the negative z-axis in the yz plane from theta and phi

Important

This function does NOT work if theta is > pi/2

	Parameters:

	
	theta (Tensor) – the anti-clockwise angle from the negative z axis, in the xyz plane

	phi (Tensor) – the anti-clockwise angle from the positive x axis, in the xy plane

	Return type:

	Tensor

	Returns:

	theta_y, the angle from the negative z-axis in the yz plane

	
property upwards_muons: Tensor

	

	
property x: Tensor

	

	
x_dim = 0

	

	
property xy: Tensor

	

	
property xyz: Tensor

	

	
property xyz_hist: List[Tensor]

	

	
property y: Tensor

	

	
y_dim = 1

	

	
property z: Tensor

	

	
z_dim = 2

	

tomopt.volume package

Submodules

tomopt.volume.heatmap module

	
class tomopt.volume.heatmap.DetectorHeatMap(*, res, eff, init_xyz, init_xy_span, m2_cost=1, budget=None, realistic_validation=False, device=device(type='cpu'), n_cluster=30)

	Bases: Module

	
assign_budget(budget=None)

	
	Return type:

	None

	
clamp_params(musigz_low, musigz_high)

	
	Return type:

	None

	
get_cost()

	
	Return type:

	Tensor

	
get_efficiency(xy, mask=None, as_2d=False)

	
	Return type:

	Tensor

	
get_hits(mu)

	
	Return type:

	Dict[str, Tensor]

	
get_resolution(xy, mask=None)

	
	Return type:

	Tensor

	
get_xy_mask(xy)

	
	Return type:

	Tensor

	
plot_map(bpixelate=False, bsavefig=False, filename=None)

	
	Return type:

	None

	
property x: Tensor

	

	
property y: Tensor

	

tomopt.volume.layer module

	
class tomopt.volume.layer.AbsDetectorLayer(pos, *, lw, z, size, device=device(type='cpu'))

	Bases: AbsLayer

Abstract base class for layers designed to record muon positions (hits) using detectors.
Inheriting classes should override a number methods to do with costs/budgets, and hit recording.

When optimisation of operating in ‘fixed budget’ mode, the Volume will check the _n_costs class attribute of the layer
and will add this to the total number of learnable budget assignments, and pass that number of budgets as an (_n_costs) tensor.
By default this is zero, and inheriting classes should set the correct number during initialisation, or via a new default value.

Some parts of TomOpt act differently on detector layers, according to how the detectors are modelled.
A type_label attribute is used to encode extra information, rather than relying purely on the object-instance type.

Multiple detection layers can be grouped together, via their pos attribute (position); a string-encoded value.
By default, the inference methods expect detectors above the passive layer to have pos==’above’,
and those below the passive volume to have pos==’below’.
When retrieving hits from the muon batch, hits will be stacked together with other hits from the same pos.

The length and width (lw) is the spans of the layer in metres in x and y, and the layer begins at x=0, y=0.
z indicates the position of the top of the layer, in meters, and size is the distance from the top of the layer to the bottom.

Important

By default, the detectors will not scatter muons.

	Parameters:

	
	pos (str) – string-encoding of the detector-layer group

	lw (Tensor) – the length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0).

	z (float) – the z position of the top of layer in metres. The bottom of the layer will be located at z-size

	size (float) – the voxel size in metres. Must be such that lw is divisible by the specified size.

	device (device) – device on which to place tensors

	
assign_budget(budget)

	Inheriting classes should override this method to correctly assign elements of an (_n_costs) tensor to the parts of the detector to which they relate.
All ordering of the tensor is defined using the function,
but proper optimisation of the budgets may require that the same ordering is used, or that it is deterministic.

	Parameters:

	budget (Optional[Tensor]) – (_n_costs) tensor of budget assignments in unit currency

	Return type:

	None

	
conform_detector()

	Optional method designed to ensure that the detector parameters lie within any require boundaries, etc.
It will be called via the AbsVolumeWrapper after any update to the detector layers, but by default does nothing.

	Return type:

	None

	
abstract forward(mu)

	Inheriting classes should override this method to implement the passage of the muons through the layer,
and record muon positions (hits) according to the detector model.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
abstract get_cost()

	Inheriting classes should override this method to return the total, current cost of the detector(s) in the layer.

	Return type:

	Tensor

	Returns:

	Single-element tensor with the current total cost of the detector in the layer.

	
class tomopt.volume.layer.AbsLayer(lw, z, size, device=device(type='cpu'))

	Bases: Module

Abstract base class for volume layers.
The length and width (lw) is the spans of the layer in metres in x and y, and the layer begins at x=0, y=0.
z indicates the position of the top of the layer, in meters, and size is the distance from the top of the layer to the bottom.
size is also used to set the length, width, and height of the voxels that make up the layer.

Important

Users must ensure that both the length and width of the layer are divisible by size

	Parameters:

	
	lw (Tensor) – the length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0).

	z (float) – the z position of the top of layer in metres. The bottom of the layer will be located at z-size

	size (float) – the voxel size in metres. Must be such that lw is divisible by the specified size.

	device (device) – device on which to place tensors

	
abstract forward(mu)

	Inheriting classes should override this method to implement the passage of the muons through the layer.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
get_lw_z_size()

	
	Return type:

	Tuple[Tensor, Tensor, float]

	Returns:

	The length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0), the z position of the top of layer in metres, and the voxel size in metres.

	
class tomopt.volume.layer.PanelDetectorLayer(pos, *, lw, z, size, panels)

	Bases: AbsDetectorLayer

A detector layer class that uses multiple “panels” to record muon positions (hits).
Currently, two “panel” types are available: DetectorPanel and DetectorHeatMap
Each detector layer, however, should contain the same type of panel, as this is used to set the type_label of the layer.

When optimisation of operating in ‘fixed budget’ mode, the Volume will check the _n_costs class attribute of the layer
and will add this to the total number of learnable budget assignments, and pass that number of budgets as an (_n_costs) tensor.
During initialisation, this is set to the number of panels in the layer, at time of initialisation.

Multiple detection layers can be grouped together, via their pos attribute (position); a string-encoded value.
By default, the inference methods expect detectors above the passive layer to have pos==’above’,
and those below the passive volume to have pos==’below’.
When retrieving hits from the muon batch, hits will be stacked together with other hits from the same pos.

The length and width (lw) is the spans of the layer in metres in x and y, and the layer begins at x=0, y=0.
z indicates the position of the top of the layer, in meters, and size is the distance from the top of the layer to the bottom.

Important

The detector panels do not scatter muons.

	Parameters:

	
	pos (str) – string-encoding of the detector-layer group

	lw (Tensor) – the length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0).

	z (float) – the z position of the top of layer in metres. The bottom of the layer will be located at z-size

	size (float) – the voxel size in metres. Must be such that lw is divisible by the specified size.

	panels (Union[List[DetectorPanel], List[DetectorHeatMap], List[SigmoidDetectorPanel], ModuleList]) – The set of initialised panels to contain in the detector layer

	
assign_budget(budget)

	Passes elements of an (_n_costs) tensor to each of the panels’ assign_budget method.
Panels are ordered by decreasing z-position, i.e. the zeroth budget element will relate always to the highest panel,
rather than necessarily to the same panel through the optimisation process

TODO investigate whether it would be better to instead assign budgets based on a fixed ordering, rather than the z-order of the panels.

	Parameters:

	budget (Optional[Tensor]) – (_n_costs) tensor of budget assignments in unit currency

	Return type:

	None

	
conform_detector()

	Loops through panels and calls their clamp_params method, to ensure that panels are located within the bounds of the detector layer.
It will be called via the AbsVolumeWrapper after any update to the detector layers.

	Return type:

	None

	
forward(mu)

	Propagates muons to each detector panel, in order of decreasing z-position, and calls their get_hits method to record hits to the muon batch.
After this, the muons will be propagated to the bottom of the detector layer.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
get_cost()

	Returns the total, current cost of the detector(s) in the layer, as computed by looping over the panels and summing the returned values of calls to
their get_cost methods.

	Return type:

	Tensor

	Returns:

	Single-element tensor with the current total cost of the detector in the layer.

	
static get_device(panels)

	Helper method to ensure that all panels are on the same device, and return that device.
If not all the panels are on the same device, then an exception will be raised.

	Parameters:

	panels (ModuleList) – ModuleLists of either DetectorPanel or DetectorHeatMap objects on device

	Return type:

	device

	Returns:

	Device on which all the panels are.

	
get_panel_zorder()

	
	Return type:

	List[int]

	Returns:

	The indices of the panels in order of decreasing z-position.

	
yield_zordered_panels()

	Yields the index of the panel, and the panel, in order of decreasing z-position.

	Return type:

	Union[Iterator[Tuple[int, DetectorPanel]], Iterator[Tuple[int, DetectorHeatMap]]]

	Returns:

	Iterator yielding panel indices and panels in order of decreasing z-position.

	
class tomopt.volume.layer.PassiveLayer(lw, z, size, rad_length_func=None, step_sz=0.01, scatter_model='pdg', device=device(type='cpu'))

	Bases: AbsLayer

Default layer of containing passive material that scatters the muons.
The length and width (lw) is the spans of the layer in metres in x and y, and the layer begins at x=0, y=0.
z indicates the position of the top of the layer, in meters, and size is the distance from the top of the layer to the bottom.
size is also used to set the length, width, and height of the voxels that make up the layer.

Important

Users must ensure that both the length and width of the layer are divisible by size

	If the layer is set to scatter muons (rad_length is not None), then two scattering models are available:
	
	‘pdg’: The default and currently recommended model based on the Gaussian scattering model described in https://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf

	‘pgeant’: An under-development model based on a parameterised fit to data sampled from GEANT 4

The X0 values of each voxel is defined via a “radiation-length function”, which should return an (n_x,n_y) tensor of voxel X0 values,
when called with the z, lw, and size of the layer. For example:

def arb_rad_length(*, z: float, lw: Tensor, size: float) -> float:
 rad_length = torch.ones(list((lw / size).long())) * X0["lead"]
 if z < 0.5:
 rad_length[...] = X0["beryllium"]
 return rad_length

This function can either be supplied during initialisation, or later via the load_rad_length method.

	Parameters:

	
	lw (Tensor) – the length and width of the layer in the x and y axes in metres, starting from (x,y)=(0,0).

	z (float) – the z position of the top of layer in metres. The bottom of the layer will be located at z-size

	size (float) – the voxel size in metres. Must be such that lw is divisible by the specified size.

	rad_length_func (Optional[Callable[[Tensor, Tensor, float], Tensor]]) – lookup function that returns an (n_x,n_y) tensor of voxel X0 values for the layer.
After initialisation, the load_rad_length method may be used to load X0 layouts.

	step_sz (float) – The step size in metres over which to compute muon propagation and scattering.

	scatter_model (str) – String selection for the scattering model to use. Currently either ‘pdg’ or ‘pgeant’.

	device (device) – device on which to place tensors

	
abs2idx(xy)

	Helper method to return the voxel indices in the layer of the supplied tensor of xy positions.

Warning

This method does NOT account for the possibility of positions may be outside the layer.
Please ensure that positions are inside the layer.

	Parameters:

	xy (Tensor) – (N,xy) tensor of absolute xy positions in metres in the volume frame

	Return type:

	Tensor

	Returns:

	(N,xy) tensor of voxel indices in x,y

	
forward(mu)

	Propagates the muons through the layer to the bottom in a series of scattering steps.
If the ‘pdg’ model is used, then the step size is the step_sz of the layer, as supplied during initialisation.
If the ‘pgeant’ model is used, the the step size specified as part of the fitting of the scattering model.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
load_rad_length(rad_length_func)

	Loads a new X0 layout into the layer voxels.

	Parameters:

	rad_length_func (Callable[[Tensor, Tensor, float], Tensor]) – lookup function that returns an (n_x,n_y) tensor of voxel X0 values for the layer.

	Return type:

	None

	
mu_abs2idx(mu, mask=None)

	Helper method to return the voxel indices in the layer that muons currently occupy.

Warning

This method does NOT account for the possibility of muons being outside the layer.
Please also supply a mask, to only select muons inside the layer.

	Parameters:

	
	mu (MuonBatch) – muons to look up

	mask (Optional[Tensor]) – Optional (muons) Boolean tensor where True indicates that the muon position should be checked

	Return type:

	Tensor

	Returns:

	(muons,2) tensor of voxel indices in x,y

	
scatter_and_propagate(mu, mask=None)

	Propagates the muons through (part of) the layer by the prespecified step_sz.
If the layer is set to scatter muons (rad_length is not None),
then the muons will also undergo scattering (changes in their trajectories and positions) according to the scatter model of the layer.

Warning

When computing scatterings, the X0 used for each muon is that of the starting voxel:
If a muon moves into a neighbouring voxel of differing X0, then this will only be accounted for in the next step.

	Parameters:

	
	mu (MuonBatch) – muons to propagate

	mask (Optional[Tensor]) – Optional (N,) Boolean mask. Only muons with True values will be scattered and propagated

	Return type:

	None

tomopt.volume.panel module

	
class tomopt.volume.panel.DetectorPanel(*, res, eff, init_xyz, init_xy_span, m2_cost=1, budget=None, realistic_validation=True, device=device(type='cpu'))

	Bases: Module

Provides an infinitely thin, rectangular panel in the xy plane, centred at a learnable xyz position (metres, in absolute position in the volume frame),
with a learnable width in x and y (xy_span).
Whilst this class can be used manually, it is designed to be used by the PanelDetectorLayer class.

Despite inheriting from nn.Module, the forward method should not be called, instead passing a MuonBatch to the
get_hits method will return hits corresponding to the muons.

During training model (.train() or .training is True), a continuous model of the resolution and efficiency will be used, such that hits are differentiable w.r.t.
the learnable parameters of the panel. This means that muons outside of the physical panel will have hits at non-zero resolution.
The current model is a 2D uncorrelated Gaussian in xy, centred over the panel, with width parameters equal to the xy_spans/4,
i.e. the panel is 4-sigma across.

Efficiency is accounted for via a weighting approach, rather than deciding whether to record hits or not, i.e. muons will always record hits,
but the probability of the hit actually being recorded is computable.

During evaluation mode (.eval() or .training is False), if the panel is set to use realistic_validation, then the physical panel will be simulated:
Muons outside the panel have zero resolution and efficiency, resulting in NaN hits positions.
Muons inside the panel will have the full resolution and efficiency of the panel,
but hits will not be differentiable w.r.t. the panel xy-position or xy-span.
If realistic_validation is False, then the continuous model will be used also in evaluation mode.

The cost of the panel is based on the supplied cost per metre squared, and the current area of the panel, according to its learnt xy-span.
Panels can also be run in “fixed-budget” mode, in which a cost of the panel is specified via the .assign_budget method.
Based on the cost per m^2, the panel will change in effective width, based on its learn xy_span (now an aspect ratio), such that its area results in a cost
equal to the specified cost of the panel.

The resolution and efficiency remain fixed at the specified values.
If intending to run in “fixed-budget” mode, then a budget can be specified here,
however the :class”~tomopt.volume.volume.Volume class will pass through all panels and initialise their budgets.

	Parameters:

	
	res (float) – resolution of the panel in m^-1, i.e. a higher value improves the precision on the hit recording

	eff (float) – efficiency of the hit recording of the panel, indicated as a probability [0,1]

	init_xyz (Tuple[float, float, float]) – initial xyz position of the panel in metres in the volume frame

	init_xy_span (Tuple[float, float]) – initial xy-span (total width) of the panel in metres

	m2_cost (float) – the cost in unit currency of the 1 square metre of detector

	budget (Optional[Tensor]) – optional required cost of the panel. Based on the span and cost per m^2, the panel will resize to meet the required cost

	realistic_validation (bool) – if True, will use the physical interpretation of the panel during evaluation

	device (device) – device on which to place tensors

	
assign_budget(budget=None)

	Sets the budget for the panel. This is then used to set a multiplicative coefficient, budget_scale, based on the m2_cost
which rescales the xy_span such that the area of the resulting panel matches the assigned budget.

	Parameters:

	budget (Optional[Tensor]) – required cost of the panel in unit currency

	Return type:

	None

	
clamp_params(xyz_low, xyz_high)

	Ensures that the panel is centred within the supplied xyz range,
and that the span of the panel is between xyz_high/20 and xyz_high*10.
A small random number < 1e-3 is added/subtracted to the min/max z position of the panel, to ensure it doesn’t overlap with other panels.

	Parameters:

	
	xyz_low (Tuple[float, float, float]) – minimum x,y,z values for the panel centre in metres

	xyz_high (Tuple[float, float, float]) – maximum x,y,z values for the panel centre in metres

	Return type:

	None

	
forward()

	Define the computation performed at every call.

Should be overridden by all subclasses.
:rtype: None

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
get_cost()

	
	Return type:

	Tensor

	Returns:

	current cost of the panel according to its area and m2_cost

	
get_efficiency(xy, mask=None)

	Computes the efficiency of panel at the supplied list of xy points.
If running in evaluation mode with realistic_validation,
then these will be the full efficiency of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Gaussian model will be used.

	Parameters:

	
	xy (Tensor) – (N,) or (N,xy) tensor of positions

	mask (Optional[Tensor]) – optional pre-computed (N,) Boolean mask, where True indicates that the xy point is inside the panel.
Only used in evaluation mode and if realistic_validation is True.
If required, but not supplied, than will be computed automatically.

	Return type:

	Tensor

	Returns:

	eff, a (N,)tensor of the efficiency at the xy points

	
get_gauss()

	
	Return type:

	Normal

	Returns:

	A Gaussian distribution, with 2 uncorrelated components corresponding to x and y, centred at the xy position of the panel, and sigma = panel span/4

	
get_hits(mu)

	
	Return type:

	Dict[str, Tensor]

The main interaction method with the panel: returns hits for the supplied muons.
Hits consist of:

reco_xy: (muons,xy) tensor of reconstructed xy positions of muons included simulated resolution
gen_xy: (muons,xy) tensor of generator-level (true) xy positions of muons
z: z position of the panel

If running in evaluation mode with realistic_validation,
then these will be the full resolution of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Gaussian model will be used.

	
get_resolution(xy, mask=None)

	Computes the xy resolutions of panel at the supplied list of xy points.
If running in evaluation mode with realistic_validation,
then these will be the full resolution of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Gaussian model will be used.

	Parameters:

	
	xy (Tensor) – (N,xy) tensor of positions

	mask (Optional[Tensor]) – optional pre-computed (N,) Boolean mask, where True indicates that the xy point is inside the panel.
Only used in evaluation mode and if realistic_validation is True.
If required, but not supplied, than will be computed automatically.

	Return type:

	Tensor

	Returns:

	res, a (N,xy) tensor of the resolution at the xy points

	
get_scaled_xy_span()

	Computes the effective size of the panel by rescaling based on the xy-span, cost per m^2, and budget.

	Return type:

	Tensor

	Returns:

	Rescaled xy-span such that the panel has a cost equal to the specified budget

	
get_xy_mask(xy)

	Computes which of the xy points lie inside the physical panel.

	Parameters:

	xy (Tensor) – xy2) tensor of points

	Return type:

	Tensor

	Returns:

	(N,) Boolean mask, where True indicates the point lies inside the panel

	
property x: Tensor

	

	
property y: Tensor

	

	
class tomopt.volume.panel.SigmoidDetectorPanel(*, smooth, res, eff, init_xyz, init_xy_span, m2_cost=1, budget=None, realistic_validation=True, device=device(type='cpu'))

	Bases: DetectorPanel

Provides an infinitely thin, rectangular panel in the xy plane, centred at a learnable xyz position (metres, in absolute position in the volume frame),
with a learnable width in x and y (xy_span).
Whilst this class can be used manually, it is designed to be used by the PanelDetectorLayer class.

Despite inheriting from nn.Module, the forward method should not be called, instead passing a MuonBatch to the
get_hits method will return hits corresponding to the muons.

During training model (.train() or .training is True), a continuous model of the resolution and efficiency will be used, such that hits are
differentiable w.r.t. the learnable parameters of the panel. This means that muons outside of the physical panel will have hits at non-zero resolution.
The model is a 2D uncorrelated Sigmoid in xy, centred over the panel, which pass 0.5 at the xy_spans/2.
The smoothness of the sigmoid affects the rate of change of resolution|efficiency near the edge of the physical border:
A higher smooth value provides a slower change, with higher resolution|efficiency outside the physical panel, whereas a lower smooth value provides a
sharper transition, with lower sensitivity to muons outside the panel (and therefore more strongly approximated a physical panel).
The SigmoidPanelSmoothnessSchedule can be used to anneal this smoothness during optimisation.

Efficiency is accounted for via a weighting approach, rather than deciding whether to record hits or not, i.e. muons will always record hits,
but the probability of the hit actually being recorded is computable.

During evaluation mode (.eval() or .training is False), if the panel is set to use realistic_validation, then the physical panel will be simulated:
Muons outside the panel have zero resolution and efficiency, resulting in NaN hits positions.
Muons inside the panel will have the full resolution and efficiency of the panel,
but hits will not be differentiable w.r.t. the panel xy-position or xy-span.
If realistic_validation is False, then the continuous model will be used also in evaluation mode.

The cost of the panel is based on the supplied cost per metre squared, and the current area of the panel, according to its learnt xy-span.
Panels can also be run in “fixed-budget” mode, in which a cost of the panel is specified via the .assign_budget method.
Based on the cost per m^2, the panel will change in effective width, based on its learn xy_span (now an aspect ratio), such that its area results in a cost
equal to the specified cost of the panel.

The resolution and efficiency remain fixed at the specified values.
If intending to run in “fixed-budget” mode, then a budget can be specified here,
however the :class”~tomopt.volume.volume.Volume class will pass through all panels and initialise their budgets.

	Parameters:

	
	smooth (Union[float, Tensor]) – smoothness of the sigmoid: A higher smooth value provides a slower change, with higher resolution|efficiency outside the physical panel,
whereas a lower smooth value provides a sharper transition, with lower sensitivity to muons outside the panel
(and therefore more strongly approximated a physical panel).

	res (float) – resolution of the panel in m^-1, i.e. a higher value improves the precision on the hit recording

	eff (float) – efficiency of the hit recording of the panel, indicated as a probability [0,1]

	init_xyz (Tuple[float, float, float]) – initial xyz position of the panel in metres in the volume frame

	init_xy_span (Tuple[float, float]) – initial xy-span (total width) of the panel in metres

	m2_cost (float) – the cost in unit currency of the 1 square metre of detector

	budget (Optional[Tensor]) – optional required cost of the panel. Based on the span and cost per m^2, the panel will resize to meet the required cost

	realistic_validation (bool) – if True, will use the physical interpretation of the panel during evaluation

	device (device) – device on which to place tensors

	
get_efficiency(xy, mask=None)

	Computes the efficiency of panel at the supplied list of xy points.
If running in evaluation mode with realistic_validation,
then these will be the full efficiency of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Sigmoid model will be used.

	Parameters:

	
	xy (Tensor) – (N,) or (N,xy) tensor of positions

	mask (Optional[Tensor]) – optional pre-computed (N,) Boolean mask, where True indicates that the xy point is inside the panel.
Only used in evaluation mode and if realistic_validation is True.
If required, but not supplied, than will be computed automatically.

	Return type:

	Tensor

	Returns:

	eff, a (N,)tensor of the efficiency at the xy points

	
get_resolution(xy, mask=None)

	Computes the xy resolutions of panel at the supplied list of xy points.
If running in evaluation mode with realistic_validation,
then these will be the full resolution of the panel for points inside the panel (indicated by the mask), and zero outside.
Otherwise, the Sigmoid model will be used.

	Parameters:

	
	xy (Tensor) – (N,xy) tensor of positions

	mask (Optional[Tensor]) – optional pre-computed (N,) Boolean mask, where True indicates that the xy point is inside the panel.
Only used in evaluation mode and if realistic_validation is True.
If required, but not supplied, than will be computed automatically.

	Return type:

	Tensor

	Returns:

	res, a (N,xy) tensor of the resolution at the xy points

	
sig_model(xy)

	Models fractional resolution and efficiency from a sigmoid-based model to provide a smooth and differentiable model of a physical detector-panel.

	Parameters:

	xy (Tensor) – (N,xy) tensor of positions

	Return type:

	Tensor

	Returns:

	Multiplicative coefficients for the nominal resolution or efficiency of the panel based on the xy position relative to the panel position and size

	
property smooth: Tensor

	

tomopt.volume.scatter_model module

tomopt.volume.volume module

	
class tomopt.volume.volume.Volume(layers, budget=None)

	Bases: Module

The Volume class is used to contain both passive layers and detector layers.
It is designed to act as an interface to them for the convenience of e.g. VolumeWrapper,
and to allow new passive-volume layouts to be loaded.

When optimisation is acting in fixed-budget mode, the volume is also responsible for learning the optimal assignments of the budget to detector parts.

Volumes can also have a “target” value. This could be e.g. the class ID of the passive-volume configuration which is currently loaded.
See e.g. VolumeClassLoss.
The target can be set as part of the call to load_rad_length()

The volume is expected to have its low-left-front (zxy) corner located at (0,0,0) metres.

Important

Currently this class expects that all PassiveLayer s form a single contiguous block,
i.e. it does not currently support sparse, or multiple, passive volumes.

	Parameters:

	
	layers (ModuleList) – torch.nn.ModuleList of instantiated AbsLayer s, ordered in decreasing z position.

	budget (Optional[float]) – optional budget of the detector in currency units.
Supplying a value for the optional budget, here, will prepare the volume to learn budget assignments to the detectors,
and configure the detectors for the budget.

	
assign_budget()

	Distributed the total budget for the detector system amongst the various sub-detectors.
When assigning budgets to layers, the budget weights are softmax-normalised to one, and multiplied by the total budget.
Slices of these budgets are then passed to the layers, with the length of the slices being taken from _n_layer_costs.

	Return type:

	None

	
build_xyz_edges()

	Computes the xyz locations of low-left-front edges of voxels in the passive layers of the volume.

	Return type:

	Tensor

	
property device: device

	

	
draw(*, xlim, ylim, zlim)

	Draws the layers/panels pertaining to the volume.
When using this in a jupyter notebook, use “%matplotlib notebook” to have an interactive plot that you can rotate.

	Parameters:

	
	xlim (Tuple[float, float]) – the x axis range for the three-dimensional plot.

	ylim (Tuple[float, float]) – the y axis range for the three-dimensional plot.

	zlim (Tuple[float, float]) – the z axis range for the three-dimensional plot.

	Return type:

	None

	
forward(mu)

	Propagates muons through each layer in turn.
Prior to propagating muons, the assign_budget() method is called.

	Parameters:

	mu (MuonBatch) – the incoming batch of muons

	Return type:

	None

	
get_cost()

	
	Return type:

	Tensor

	Returns:

	
	The total, current cost of the layers in the volume,
	or the assigned budget for the volume (these two values should be the same but, the actual cost won’t be evaluated explicitly)

	
get_detectors()

	
	Return type:

	List[AbsDetectorLayer]

	Returns:

	A list of all AbsDetectorLayer s in the volume, in the order of layers (normally decreasing z position)

	
get_passive_z_range()

	
	Return type:

	Tuple[Tensor, Tensor]

	Returns:

	The z position of the bottom of the lowest passive layer, and the z position of the top of the highest passive layer.

	
get_passives()

	
	Return type:

	List[PassiveLayer]

	Returns:

	A list of all PassiveLayer s in the volume, in the order of layers (normally decreasing z position)

	
get_rad_cube()

	
	Return type:

	Tensor

	Returns:

	zxy tensor of the values stored in the voxels of the passive volume, with the lowest layer being found in the zeroth z index position.

	
property h: Tensor

	Returns:
The height of the volume (including both passive and detector layers), as computed from the z position of the zeroth layer.

	
load_rad_length(rad_length_func, target=None)

	Loads a new passive-volume configuration.
Optionally, a “target” for the configuration may also be supplied.
This could be e.g. the class ID of the passive-volume configuration which is currently loaded.
See e.g. VolumeClassLoss.

	Parameters:

	
	rad_length_func (Callable[[Tensor, Tensor, float], Tensor]) – lookup function that returns an (n_x,n_y) tensor of voxel X0 values for the layer.

	target (Optional[Tensor]) – optional target for the new layout

	Return type:

	None

	
lookup_passive_xyz_coords(xyz)

	Looks up the voxel indices of the supplied list of absolute positions in the volume frame

Warning

Assumes the same size for all passive layers, and that they form a single contiguous block

	Parameters:

	xyz (Tensor) – an (N,xyz) tensor of absolute positions in the volume frame

	Return type:

	Tensor

	Returns:

	an (N,xyz) tensor of zero-ordered voxel indices, which correspond to the supplied positions

	
property lw: Tensor

	Returns:
The length and width of the passive volume

	
property passive_size: float

	Returns:
The size of voxels in the passive volume

	
property target: Tensor | None

	Returns:
The “target” value of the volume. This could be e.g. the class ID of the passive-volume configuration which is currently loaded.
See e.g. VolumeClassLoss.
The target can be set as part of the call to load_rad_length()

	
property xyz_centres: Tensor

	xyz locations of the centres of voxels in the passive layers of the volume.

	
property xyz_edges: Tensor

	xyz locations of low-left-front edges of voxels in the passive layers of the volume.

tomopt.inference package

Submodules

tomopt.inference.scattering module

	
class tomopt.inference.scattering.GenScatterBatch(mu, volume)

	Bases: ScatterBatch

Class for computing scattering information from the true hits via incoming/outgoing trajectory fitting.

Warning

This class is intended for diagnostic purposes only.
The tracks and scatter variables carry no gradient w.r.t. detector parameters (except z position).

Linear fits are performed separately to all hits associated with layer groups, as indicated by the pos attribute of the layers which recorded hits.
Currently, the inference methods expect detectors above the passive layer to have pos==’above’,
and those below the passive volume to have pos==’below’.
Trajectory fitting is performed using an analytic likelihood minimisation, but no uncertainties on the hits are considered.

Important

The current separation of hits into above and below groups does not allow for e.g. a third set of detectors,
since this split is based on the value of the n_hits_above attribute.

One instance of this class should created for each MuonBatch.
As part of the initialisation, muons will be filtered using _filter_scatters()
in order to avoid NaN/Inf values. This results in direct, in-place changes to the MuonBatch.

Since many variables of the scattering can be inferred, but not all are required for further inference downstream,
variables, and their uncertainties, are computed on a lazy basis, with memoisation: the values are only computed on the first request (if at all)
and then stored in case of further requests.

The dtheta, dphi, and total scattering variables are computed under the assumption of small angular scatterings.
An assumption is necessary here, since there is a loss of information in the when the muons undergo scattering in theta and phi:
since theta is [0,pi] a negative scattering in theta will always results in a positive theta, but phi can become phi+pi.
When inferring the angular scattering, one cannot precisely tell whether instead a large scattering in phi occurred.
The total scattering (total_scatter) is the quadrature sum of dtheta and dphi, and all three are computed under both hypotheses.
The final values of these are chosen using the hypothesis which minimises the total amount of scattering.
This assumption has been tested and found to be good.

	Parameters:

	
	mu (MuonBatch) – muons with hits to infer on

	volume (Volume) – volume through which the muons travelled

	
class tomopt.inference.scattering.ScatterBatch(mu, volume)

	Bases: object

Class for computing scattering information from the hits via incoming/outgoing trajectory fitting.

Linear fits are performed separately to all hits associated with layer groups, as indicated by the pos attribute of the layers which recorded hits.
Currently, the inference methods expect detectors above the passive layer to have pos==’above’,
and those below the passive volume to have pos==’below’.
Trajectory fitting is performed using an analytic likelihood minimisation, which considers uncertainties and efficiencies on the hits in x and y.

Important

The current separation of hits into above and below groups does not allow for e.g. a third set of detectors,
since this split is based on the value of the n_hits_above attribute.

One instance of this class should created for each MuonBatch.
As part of the initialisation, muons will be filtered using _filter_scatters()
in order to avoid NaN/Inf gradients or values. This results in direct, in-place changes to the MuonBatch.

Since many variables of the scattering can be inferred, but not all are required for further inference downstream,
variables, and their uncertainties, are computed on a lazy basis, with memoisation: the values are only computed on the first request (if at all)
and then stored in case of further requests.

The dtheta, dphi, and total scattering variables are computed under the assumption of small angular scatterings.
An assumption is necessary here, since there is a loss of information in the when the muons undergo scattering in theta and phi:
since theta is [0,pi] a negative scattering in theta will always results in a positive theta, but phi can become phi+pi.
When inferring the angular scattering, one cannot precisely tell whether instead a large scattering in phi occurred.
The total scattering (total_scatter) is the quadrature sum of dtheta and dphi, and all three are computed under both hypotheses.
The final values of these are chosen using the hypothesis which minimises the total amount of scattering.
This assumption has been tested and found to be good.

	Parameters:

	
	mu (MuonBatch) – muons with hits to infer on

	volume (Volume) – volume through which the muons travelled

	
property above_gen_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of true hits in the “above” detectors

	
property above_hit_effs: Tensor | None

	Returns:
(muons,hits,effs) tensor of hit efficiencies in the “above” detectors

	
property above_hit_uncs: Tensor | None

	Returns:
(muons,hits,xyz) tensor of uncertainties on hits in the “above” detectors

	
property above_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of recorded hits in the “above” detectors

	
property below_gen_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of true hits in the “below” detectors

	
property below_hit_effs: Tensor | None

	Returns:
(muons,hits,eff) tensor of hit efficiencies in the “below” detectors

	
property below_hit_uncs: Tensor | None

	Returns:
(muons,hits,xyz) tensor of uncertainties on hits in the “below” detectors

	
property below_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of recorded hits in the “below” detectors

	
property dphi: Tensor

	Returns:
(muons,1) delta phi between incoming & outgoing muons

	
property dphi_unc: Tensor

	Returns:
(muons,1) uncertainty on dphi

	
property dtheta: Tensor

	Returns:
(muons,1) delta theta between incoming & outgoing muons

	
property dtheta_unc: Tensor

	Returns:
(muons,1) uncertainty on dtheta

	
property dtheta_xy: Tensor

	Returns:
(muons,xy) delta theta_xy between incoming & outgoing muons in the zx and zy planes

	
property dtheta_xy_unc: Tensor

	Returns:
(muons,xy) uncertainty on dtheta_xy

	
property dxy: Tensor

	Returns:
(muons,xy) distances in x & y from PoCA to incoming|outgoing muons

	
property dxy_unc: Tensor

	Returns:
(muons,xy) uncertainty on dxy

	
property gen_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of true hits

	
static get_muon_trajectory(hits, uncs, lw)

	Fits a linear trajectory to a group of hits, whilst considering their uncertainties on their xy positions.
No uncertainty is considered for z positions of hits.
The fit is performed via an analytical likelihood-maximisation.

Important

Muons with <2 hits have NaN trajectory

	Parameters:

	
	hits (Tensor) – (muons,hits,xyz) tensor of hit positions

	uncs (Tensor) – (muons,hits,(unc x,unc y,0)) tensor of hit uncertainties

	lw (Tensor) – length and width of the passive layers of the volume

	Returns:

	(muons,xyz) fitted-vector directions
start: (muons,xyz) initial point of fitted-vector

	Return type:

	vec

	
get_scatter_mask()

	
	Return type:

	Tensor

	Returns:

	(muons) Boolean tensor where True indicates that the PoCA of the muon is located within the passive volume

	
property hit_effs: Tensor | None

	Returns:
(muons,hits,eff) tensor of hit efficiencies

	
property hit_uncs: Tensor | None

	Returns:
(muons,hits,xyz) tensor of uncertainties on hits

	
property hits: Dict[str, Dict[str, Tensor]]

	Returns:
Dictionary of hits, as returned by get_hits()

	
property n_hits_above: int | None

	Returns:
Number of hits per muon in the “above” detectors

	
property n_hits_below: int | None

	Returns:
Number of hits per muon in the “below” detectors

	
property phi_in: Tensor

	Returns:
(muons,1) phi of incoming muons

	
property phi_in_unc: Tensor

	Returns:
(muons,1) uncertainty on phi_in

	
property phi_out: Tensor

	Returns:
(muons,1) phi of outgoing muons

	
property phi_out_unc: Tensor

	Returns:
(muons,1) uncertainty on phi_out

	
plot_scatter(idx, savename=None)

	Plots representation of hits and fitted trajectories for a single muon.

	Parameters:

	
	idx (int) – index of muon to plot

	savename (Optional[Path]) – optional path to save figure to

	Return type:

	None

	
property poca_xyz: Tensor

	Returns:
(muons,xyz) xyz location of PoCA

	
property poca_xyz_unc: Tensor

	Returns:
(muons,xyz) uncertainty on poca_xyz

	
property reco_hits: Tensor | None

	Returns:
(muons,hits,xyz) tensor of recorded hits

	
property theta_in: Tensor

	Returns:
(muons,1) theta of incoming muons

	
property theta_in_unc: Tensor

	Returns:
(muons,1) uncertainty on theta_in

	
property theta_msc: Tensor

	Returns:
(muons,1) theta_msc; the total amount of angular scattering

	
property theta_msc_unc: Tensor

	Returns:
(muons,1) uncertainty on total_scatter

	
property theta_out: Tensor

	Returns:
(muons,1) theta of outgoing muons

	
property theta_out_unc: Tensor

	Returns:
(muons,1) uncertainty on theta_out

	
property theta_xy_in: Tensor

	Returns:
(muons,xy) decomposed theta and phi of incoming muons in the zx and zy planes

	
property theta_xy_in_unc: Tensor

	Returns:
(muons,xy) uncertainty on theta_xy_in

	
property theta_xy_out: Tensor

	Returns:
(muons,xy) decomposed theta and phi of outgoing muons in the zx and zy planes

	
property theta_xy_out_unc: Tensor

	Returns:
(muons,xy) uncertainty on theta_xy_out

	
property total_scatter: Tensor

	Returns:
(muons,1) theta_msc; the total amount of angular scattering

	
property total_scatter_unc: Tensor

	Returns:
(muons,1) uncertainty on total_scatter

	
property track_in: Tensor | None

	Returns:
(muons,xyz) incoming xyz vector

	
property track_out: Tensor | None

	Returns:
(muons,xyz) outgoing xyz vector

	
property track_start_in: Tensor | None

	Returns:
(muons,xyz) initial point of incoming xyz vector

	
property track_start_out: Tensor | None

	Returns:
(muons,xyz) initial point of outgoing xyz vector

	
property xyz_in: Tensor

	Returns:
(muons,xyz) inferred xy position of muon at the z-level of the top of the passive volume

	
property xyz_in_unc: Tensor

	Returns:
(muons,xyz) uncertainty on xyz_in

	
property xyz_out: Tensor

	Returns:
(muons,xyz) inferred xy position of muon at the z-level of the bottom of the passive volume

	
property xyz_out_unc: Tensor

	Returns:
(muons,xyz) uncertainty on xyz_out

tomopt.inference.volume module

	
class tomopt.inference.volume.AbsIntClassifierFromX0(partial_x0_inferrer, volume, output_probs=True, class2float=None)

	Bases: AbsVolumeInferrer

Abstract base class for inferring integer targets through multiclass classification from voxelwise X0 predictions.
Inheriting classes must provide a way to convert voxelwise X0s into class probabilities of the required dimension.
Requires a basic inferrer for providing the voxelwise X0 predictions.
Optionally, the predictions can be returns as the raw class predictions, or the most probable class.
In case of the latter, this class can be optionally be converted to a float value via a user-provided processing function.

	Parameters:

	
	partial_x0_inferrer (Type[AbsX0Inferrer]) – (partial) class to instatiate to provide the voxelwise X0 predictions

	volume (Volume) – volume through which the muons will be passed

	output_probs (bool) – if True, will return the per-class probabilites, otherwise will return the argmax of the probabilities, over the last dimension

	class2float (Optional[Callable[[Tensor, Volume], Tensor]]) – optional function to convert class indices to a floating value

	
add_scatters(scatters)

	Appends a new set of muon scatter vairables.
When get_prediction() is called, the prediction will be based on all
ScatterBatch s added up to that point

	Return type:

	None

	
compute_efficiency(scatters)

	Compuates the per-muon efficiency according to the method implemented by the X0 inferrer.

	Parameters:

	scatters (ScatterBatch) – scatter batch containing muons whose efficiency should be computed

	Return type:

	Tensor

	Returns:

	(muons) tensor of muon efficiencies

	
get_prediction()

	Computes the predicions for the volume.
If class probabilities were requested during initialisation, then these will be returned.
Otherwise the most probable class will be returned, and this will be converted to a float value if class2float is not None.

	Returns:

	(*) volume prediction

	Return type:

	pred

	
abstract x02probs(vox_preds)

	Inheriting classes must override this method to convert voxelwise X0 predictions to class probabilities

	Parameters:

	vox_preds (Tensor) – (z,x,y) tensor of voxelwise X0 predictions

	Return type:

	Tensor

	Returns:

	(*) tensor of class probabilities

	
class tomopt.inference.volume.AbsVolumeInferrer(volume)

	Bases: object

Abstract base class for volume inference.

Inheriting classes are expected to be fed multiple ScatterBatch s,
via add_scatters(), for a single Volume
and return a volume prediction based on all of the muon batches when get_prediction() is called.

	Parameters:

	volume (Volume) – volume through which the muons will be passed

	
add_scatters(scatters)

	Appends a new set of muon scatter variables.
When get_prediction() is called, the prediction will be based on all
ScatterBatch s added up to that point

	Return type:

	None

	
abstract compute_efficiency(scatters)

	Inheriting classes must override this method to provide a computation of the per-muon efficiency, given the individual muon hit efficiencies.

	Return type:

	Tensor

	
abstract get_prediction()

	Inheriting classes must override this method to provide a prediction computed using the added scatter batches.
E.g. the sum of muon efficiencies.

	Return type:

	Optional[Tensor]

	
class tomopt.inference.volume.AbsX0Inferrer(volume)

	Bases: AbsVolumeInferrer

Abstract base class for inferring the X0 of every voxel in the passive volume.

The inference is based on the PoCA approach of assigning the entirety of the muon scattering to a single point,
and the X0 computation is based on inversion of the PDG scattering model described in
https://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf.

	Once all scatter batches have been added, the inference proceeds thusly:
	
	For each muon i, a probability p_ij, is computed according to the probability that the PoCA was located in voxel j.

	These probabilities are computed by integrating over the voxel the PDF of 3 uncorrelated Gaussians centred on the PoCA, with scales equal the uncertainty on the PoCA position in x,y,z.

	p_ij is multiplied by muon efficiency e_i to compute a muon/voxel weight w_ij.

	Inversion of the PDG model gives: \(X_0 = \left(\frac{0.0136}{p^{\mathrm{rms}}}\right)^2\frac{\delta z}{\cos\left(\bar{\theta}^{\mathrm{rms}}\right)}\frac{2}{\theta^{\mathrm{rms}}_{\mathrm{tot.}}}\)

	
	In order to account for the muon weights and compute different X0s for the voxels whilst using the whole muon population:
	
	Weighted RMSs are computed for each of the scattering terms in the right-hand side of the equation.

	In addition to the muon weight w_ij, the variances of the squared values of the scattering variables is used to divide w_ij.

	The result is a set of X0 predictions X0_j.

Important

Inversion of the PDG model does NOT account for the natural log term.

Important

To simplify the computation code, this class relies heavily on lazy computation and memoisation; be careful if calling private methods manually.

	Parameters:

	volume (Volume) – volume through which the muons will be passed

	
get_prediction()

	Computes the predicted X0 per voxel as a (z,x,y) tensor via PDG scatter-model inversion for the provided scatter batches.

	Returns:

	(z,x,y) voxelwise X0 predictions

	Return type:

	pred

	
property muon_efficiency: Tensor

	Returns:
(muons,1) tensor of the efficiencies of the muons

	
property muon_mom: Tensor

	Returns:
(muons,1) tensor of the momenta of the muons

	
property muon_mom_unc: Tensor

	Returns:
(muons,1) tensor of the uncertainty on the momenta of the muons

	
property muon_poca_xyz: Tensor

	Returns:
(muons,xyz) tensor of PoCA locations

	
property muon_poca_xyz_unc: Tensor

	Returns:
(muons,xyz) tensor of PoCA location uncertainties

	
property muon_probs_per_voxel_zxy: Tensor

	
Warning

Integration tested only

TODO: Don’t assume that poca_xyz uncertainties are uncorrelated
TODO: Improve efficiency: currently CDFs are computed multiple times at the same points; could precompute x,y,z probs once, and combine in triples
:returns: (muons,z,x,y) tensor of probabilities that the muons’ PoCAs were located in the given voxels.

	
property muon_theta_in: Tensor

	Returns:
(muons,1) tensor of the thetas of the incoming muons

	
property muon_theta_in_unc: Tensor

	Returns:
(muons,1) tensor of the uncertainty on the theta of the incoming muons

	
property muon_theta_out: Tensor

	Returns:
(muons,1) tensor of the thetas of the outgoing muons

	
property muon_theta_out_unc: Tensor

	Returns:
(muons,1) tensor of the uncertainty on the theta of the outgoing muons

	
property muon_total_scatter: Tensor

	Returns:
(muons,1) tensor of total angular scatterings

	
property muon_total_scatter_unc: Tensor

	Returns:
(muons,1) tensor of uncertainties on the total angular scatterings

	
property n_mu: int

	Returns:
Total number muons included in the inference

	
property vox_zxy_x0_pred_uncs: Tensor

	
Warning

Not recommended for use: long calculation; not unit-tested

	Returns:

	(z,x,y) tensor of uncertainties on voxelwise X0s

	
property vox_zxy_x0_preds: Tensor

	Returns:
(z,x,y) tensor of voxelwise X0 predictions

	
static x0_from_scatters(deltaz, total_scatter, theta_in, theta_out, mom)

	Computes the X0 of a voxel, by inverting the PDG scattering model in terms of the scattering variables

Important

Inversion of the PDG model does NOT account for the natural log term.

	Parameters:

	
	deltaz (float) – height of the voxels

	total_scatter (Tensor) – (voxels,1) tensor of the (RMS of the) total angular scattering of the muon(s)

	theta_in (Tensor) – (voxels,1) tensor of the (RMS of the) theta of the muon(s), as inferred using the incoming trajectory/ies

	theta_out (Tensor) – (voxels,1) tensor of the (RMS of the) theta of the muon(s), as inferred using the outgoing trajectory/ies

	mom (Tensor) – (voxels,1) tensor of the (RMS of the) momentum/a of the muon(s)

	Return type:

	Tensor

	Returns:

	(voxels,1) estimated X0 in metres

	
class tomopt.inference.volume.DenseBlockClassifierFromX0s(n_block_voxels, partial_x0_inferrer, volume, use_avgpool=True, cut_coef=10000.0, ratio_offset=-1.0, ratio_coef=1.0)

	Bases: AbsVolumeInferrer

Class for inferreing the presence of a small amount of denser material in the passive volume.

Transforms voxel-wise X0 preds into binary classification statistic under the hypothesis of a small, dense block against a light-weight background.
This test statistic, s is computed as:

\[r = 2 \frac{\bar{X0}_{0,\mathrm{bkg}} - \bar{X0}_{0,\mathrm{blk}}}{\bar{X0}_{0,\mathrm{bkg}} + \bar{X0}_{0,\mathrm{blk}}}
s = \sigma\!(a(r+b))\]

where \(\bar{X0}_{0,\mathrm{blk}}\) is the mean X0 of the N lowest X0 voxels,
and \(\bar{X0}_{0,\mathrm{bkg}}\) is the mean X0 of the remaining voxels.
a and b are rescaling coefficients and offsets.

This results in a differentiable value constrained beween 0 and 1, with values near 0 indicating that no relatively dense material is present,
and values nearer 1 indicating that it is present.
In case it is expected that the dense material forms a contiguous block, the voxelwise X0s can be blurred via a stride-1 kernel-size-3 average pooling.

In actuality, the “cut” on X0s into background and block is implemented as a sigmoid weight, centred at the necessary kth value of the X0.
This means that the test statisitc is also differentiable w.r.t. the cut.

	Parameters:

	
	n_block_voxels (int) – number of voxels expected to be occupied by the dense material, if present

	partial_x0_inferrer (Type[AbsX0Inferrer]) – (partial) class to instatiate to provide the voxelwise X0 predictions

	volume (Volume) – volume through which the muons will be passed

	use_avgpool (bool) – wether to blur voxelwise X0 predicitons with a stride-1 kernel-size-3 average pooling
useful when the dense material is expected to form a contiguous block

	cut_coef (float) – the “sharpness” of the sigmoid weight that splits voxels into block and background.
Higher values results in a sharper cut.

	ratio_offset (float) – additive constant for the X0 ratio

	ratio_coef (float) – multiplicative coefficient for the offset X0 ratio

	
add_scatters(scatters)

	Appends a new set of muon scatter vairables.
When get_prediction() is called, the prediction will be based on all
ScatterBatch s added up to that point

	Return type:

	None

	
compute_efficiency(scatters)

	Compuates the per-muon efficiency according to the method implemented by the X0 inferrer.

	Parameters:

	scatters (ScatterBatch) – scatter batch containing muons whose efficiency should be computed

	Return type:

	Tensor

	Returns:

	(muons) tensor of muon efficiencies

	
get_prediction()

	Computes the test statistic for the volume, with values near 0 indicating that no relatively dense material is present,
and values nearer 1 indicating that it is present.

	Returns:

	(1,1,1) volume prediction

	Return type:

	pred

	
class tomopt.inference.volume.PanelX0Inferrer(volume)

	Bases: AbsX0Inferrer

Class for inferring the X0 of every voxel in the passive volume using hits recorded by PanelDetectorLayer s.

The inference is based on the PoCA approach of assigning the entirety of the muon scattering to a single point,
and the X0 computation is based on inversion of the PDG scattering model described in
https://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf.

	Once all scatter batches have been added, the inference proceeds thusly:
	
	For each muon i, a probability p_ij, is computed according to the probability that the PoCA was located in voxel j.

	These probabilities are computed by integrating over the voxel the PDF of 3 uncorrelated Gaussians centred on the PoCA, with scales equal the uncertainty on the PoCA position in x,y,z.

	p_ij is multiplied by muon efficiency e_i to compute a muon/voxel weight w_ij.

	Inversion of the PDG model gives: \(X_0 = \left(\frac{0.0136}{p^{\mathrm{rms}}}\right)^2\frac{\delta z}{\cos\left(\bar{\theta}^{\mathrm{rms}}\right)}\frac{2}{\theta^{\mathrm{rms}}_{\mathrm{tot.}}}\)

	
	In order to account for the muon weights and compute different X0s for the voxels whilst using the whole muon population:
	
	Weighted RMSs are computed for each of the scattering terms in the right-hand side of the equation.

	In addition to the muon weight w_ij, the variances of the squared values of the scattering variables is used to divide w_ij.

	The result is a set of X0 predictions X0_j.

Important

Inversion of the PDG model does NOT account for the natural log term.

Important

To simplify the computation code, this class relies heavily on lazy computation and memoisation; be careful if calling private methods manually.

	Parameters:

	volume (Volume) – volume through which the muons will be passed

TODO: refactor this to be provided to volume inference as a callable

	
compute_efficiency(scatters)

	Computes the per-muon efficiency, given the individual muon hit efficiencies,
as the probability of at least two hits above and below the passive volume.

	Parameters:

	scatters (ScatterBatch) – scatter batch containing muons whose efficiency should be computed

	Return type:

	Tensor

	Returns:

	(muons) tensor of muon efficiencies

tomopt.optimisation package

Subpackages

	tomopt.optimisation.callbacks package

	tomopt.optimisation.data package

	tomopt.optimisation.loss package

	tomopt.optimisation.wrapper package

tomopt.optimisation.callbacks package

Submodules

tomopt.optimisation.callbacks.callback module

	
class tomopt.optimisation.callbacks.callback.Callback

	Bases: object

Implements the base class from which all callback should inherit.
Callbacks are used as part of the fitting, validation, and prediction methods of AbsVolumeWrapper.
They can interject at various points, but by default do nothing. Please check in the AbsVolumeWrapper
to see when exactly their interjections are called.

When writing new callbacks, the VolumeWrapper
they are associated with will be their wrapper attribute.
Their wrapper will have a fit_params attribute (FitParams) which is a data-class style object.
It contains all the objects associated with the fit and predictions, including other callbacks.
Callback interjections should read/write to wrapper.fit_params, rather than returning values.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	
on_backwards_begin()

	Runs when the loss for a batch of passive volumes has been computed, but not yet backpropagated.

	Return type:

	None

	
on_backwards_end()

	Runs when the loss for a batch of passive volumes has been backpropagated, but parameters have not yet been updated.

	Return type:

	None

	
on_epoch_begin()

	Runs when a new training or validations epoch begins.

	Return type:

	None

	
on_epoch_end()

	Runs when a training or validations epoch ends.

	Return type:

	None

	
on_mu_batch_begin()

	Runs when a new batch of muons begins.

	Return type:

	None

	
on_mu_batch_end()

	Runs when a batch muons ends and scatters have been added to the volume inferrer.

	Return type:

	None

	
on_pred_begin()

	Runs when the wrapper is about to begin in prediction mode.

	Return type:

	None

	
on_pred_end()

	Runs when the wrapper has finished in prediction mode.

	Return type:

	None

	
on_scatter_end()

	Runs when a scatters for the latest muon batch have been computed, but not yet added to the volume inferrer.

	Return type:

	None

	
on_step_end()

	Runs when the parameters have been updated.

	Return type:

	None

	
on_train_begin()

	Runs when detector fitting begins.

	Return type:

	None

	
on_train_end()

	Runs when detector fitting ends.

	Return type:

	None

	
on_volume_batch_begin()

	Runs when a new batch of passive volume layouts is begins.

	Return type:

	None

	
on_volume_batch_end()

	Runs when a batch of passive volume layouts is ends.

	Return type:

	None

	
on_volume_begin()

	Runs when a new passive volume layout is loaded.

	Return type:

	None

	
on_volume_end()

	Runs when a passive volume layout has been predicted.

	Return type:

	None

	
on_x0_pred_begin()

	Runs when the all the muons for a volume have propagated, and the volume inferrer is about to make its final prediction.

	Return type:

	None

	
on_x0_pred_end()

	Runs after the volume inferrer has made its final prediction, but before the loss is computed.

	Return type:

	None

	
set_wrapper(wrapper)

	
	Parameters:

	wrapper (AbsVolumeWrapper) – Volume wrapper to associate with the callback

	Return type:

	None

	
wrapper: Optional[AbsVolumeWrapper] = None

	

tomopt.optimisation.callbacks.cyclic_callbacks module

	
class tomopt.optimisation.callbacks.cyclic_callbacks.CyclicCallback

	Bases: Callback

tomopt.optimisation.callbacks.data_callbacks module

	
class tomopt.optimisation.callbacks.data_callbacks.MuonResampler

	Bases: Callback

Resamples muons to only include those which will impact the passive volume at some point, even if they only hit the bottom layer.

	
static check_mu_batch(mu, volume)

	Checks the provided muon batch to determine which muons will impact the passive volume at any point

	Parameters:

	
	mu (MuonBatch) – incoming batch of muons

	volume (Volume) – Volume containing the passive volume to test against

	Return type:

	Tensor

	Returns:

	(muons) Boolean tensor where True indicates that the muon will hit the passive volume

	
on_mu_batch_begin()

	Resamples muons prior to propagation through the volume such that all muons will hit the passive volume.

TODO Add check for realistic validation

	Return type:

	None

	
static resample(mus, volume, gen)

	Resamples muons until all muons will hit the passive volume.

	Parameters:

	
	mus (Tensor) – xy_p_theta_phi tensor designed to initialise a MuonBatch

	volume (Volume) – Volume containing the passive volume to test against

	gen (AbsMuonGenerator) – Muon generator for sampling replacement muons

	Return type:

	Tensor

	Returns:

	xy_p_theta_phi tensor designed to initialise a MuonBatch

tomopt.optimisation.callbacks.detector_callbacks module

	
class tomopt.optimisation.callbacks.detector_callbacks.PanelCentring

	Bases: Callback

Callback class for panel centring in the optimisation process.

This callback is used to centre the panels of PanelDetectorLayer objects
by setting their xy coordinates to the mean xy value of all panels in the layer.

This update takes place after the panel positions have been updated in the optimisation process.

	
on_step_end()

	Updates the xy coordinates of all panels in the PanelDetectorLayer objects after they have be updated, based on their current mean xy position.

	Return type:

	None

	
class tomopt.optimisation.callbacks.detector_callbacks.PanelUpdateLimiter(max_xy_step=None, max_z_step=None, max_xy_span_step=None)

	Bases: Callback

Limits the maximum difference that optimisers can make to panel parameters, to prevent them from being affected by large updates from anomolous gradients.
This is enacted by a hard-clamping based on the initial and final parameter values before/after each update step.

	Parameters:

	
	max_xy_step (Optional[Tuple[float, float]]) – maximum update in xy position of panels

	max_z_step (Optional[float]) – maximum update in z position of panels

	max_xy_span_step (Optional[Tuple[float, float]]) – maximum update in xy_span position of panels

	
on_backwards_end()

	Records the current paramaters of each panel before they are updated.

	Return type:

	None

	
on_step_end()

	After the update step, goes through and hard-clamps parameter updates based on the difference between their current values
and values before the update step.

	Return type:

	None

	
class tomopt.optimisation.callbacks.detector_callbacks.SigmoidPanelSmoothnessSchedule(smooth_range)

	Bases: PostWarmupCallback

Creates an annealing schedule for the smooth attribute of SigmoidDetectorPanel.
This can be used to move from smooth, unphysical panel with high sensitivity outside the physical panel boundaries,
to one with sharper decrease in resolution | efficiency at the edge, and so more closely resembles a physical panel, whilst still being differentiable.

	Parameters:

	smooth_range (Tuple[float, float]) – tuple of initial and final values for the smooth attributes of all panels in the volume.
A base-10 log schedule used over the number of epochs-total number of warmup epochs.

	
on_epoch_begin()

	At the start of each training epoch, will anneal the SigmoidDetectorPanel s’ smooth attributes, if the callback is active.

	Return type:

	None

	
on_train_begin()

	Sets all SigmoidDetectorPanel s to their initial smooth values.

	Return type:

	None

tomopt.optimisation.callbacks.diagnostic_callbacks module

	
class tomopt.optimisation.callbacks.diagnostic_callbacks.HitRecord

	Bases: ScatterRecord

Records the hits of the muons.
Once recorded, the hits can be retrieved via the get_record() method.
plot_hit_density() may be used to plot the hit record.

Warning

Currently this callback makes no distinction between different volume layouts, and is designed to used over a single volume layout.

TODO extend these to create one record per volume

	
on_scatter_end()

	Saves the hits of the latest muon batch.

	Return type:

	None

	
class tomopt.optimisation.callbacks.diagnostic_callbacks.ScatterRecord

	Bases: Callback

Records the PoCAs of the muons which are located inside the passive volume.
Once recorded, the PoCAs can be retrieved via the get_record() method.
plot_scatter_density() may be used to plot the scatter record.

Warning

Currently this callback makes no distinction between different volume layouts, and is designed to used over a single volume layout.

TODO extend these to create one record per volume

	
get_record(as_df=False)

	Access the recorded PoCAs.

	Parameters:

	as_df (bool) – if True, will return a Pandas DataFrame, otherwise will return a Tensor

	Return type:

	Union[Tensor, DataFrame]

	Returns:

	a Pandas DataFrame or a Tensor of recorded PoCAs

	
on_pred_begin()

	Prepares to record scatters

	Return type:

	None

	
on_scatter_end()

	Saves the PoCAs of the latest muon batch.

	Return type:

	None

	
on_train_begin()

	Prepares to record scatters

	Return type:

	None

tomopt.optimisation.callbacks.eval_metric module

	
class tomopt.optimisation.callbacks.eval_metric.EvalMetric(lower_metric_better, name=None, main_metric=True)

	Bases: Callback

Base class from which metric should inherit and implement the computation of their metric values.
Inheriting classes will automatically be detected by MetricLogger
and included in live feedback if it is the “main metric”

	Parameters:

	
	lower_metric_better (bool) – if True, a lower value of the metric should be considered better than a higher value

	name (Optional[str]) – name to associate with the metric

	main_metric (bool) – whether this metric should be considered the “main metric”

	
get_metric()

	This will be called by on_epoch_end()

	Return type:

	float

	Returns:

	metric value

	
on_train_begin()

	Ensures that only one main metric is used

	Return type:

	None

tomopt.optimisation.callbacks.grad_callbacks module

	
class tomopt.optimisation.callbacks.grad_callbacks.NoMoreNaNs

	Bases: Callback

Prior to parameter updates, this callback will check and set any NaN gradients to zero.
Updates based on NaN gradients will set the parameter value to NaN.

Important

As new parameters are introduced, e.g. through new detector models, this callback will need to be updated.

	
on_backwards_end()

	Prior to optimiser updates, parameter gradients are checked for NaNs.

	Return type:

	None

tomopt.optimisation.callbacks.heatmap_gif module

	
class tomopt.optimisation.callbacks.heatmap_gif.HeatMapGif(gif_filename='heatmap.gif')

	Bases: Callback

Records a gif of the first heatmap in the first detector layer during training.

	Parameters:

	gif_filename (str) – savename for the gif (will be appended to the callback savepath)

	
on_epoch_begin()

	When a new training epoch begins, saves an image of the current layout of the first heatmap in the first detector layer

	Return type:

	None

	
on_train_begin()

	Prepares to record a new gif

	Return type:

	None

	
on_train_end()

	When training, saves an image of the current layout of the first heatmap in the first detector layer
and then combines all images into a gif

	Return type:

	None

tomopt.optimisation.callbacks.monitors module

	
class tomopt.optimisation.callbacks.monitors.MetricLogger(gif_filename='optimisation_history.gif', gif_length=10.0, show_plots=False)

	Bases: Callback

Provides live feedback during training showing a variety of metrics to help highlight problems or test hyper-parameters without completing a full training.
If show_plots is false, will instead print training and validation losses at the end of each epoch.
The full history is available as a dictionary by calling get_loss_history().
Additionally, a gif of the optimisation can be saved.

	Parameters:

	
	gif_filename (Optional[str]) – optional savename for recording a gif of the optimisation process (None -> no gif)
The savename will be appended to the callback savepath

	gif_length (float) – If saving gifs, controls the total length in seconds

	show_plots (bool) – whether to provide live plots during optimisation in notebooks

	
cat_palette = 'tab10'

	

	
get_loss_history()

	Get the current history of losses and metrics

	Returns:

	tuple of ordered dictionaries: first with losses, second with validation metrics

	Return type:

	history

	
get_results(loaded_best)

	
	Return type:

	Dict[str, float]

	
h_mid = 8

	

	
lbl_col = 'black'

	

	
lbl_sz = 24

	

	
leg_sz = 16

	

	
on_backwards_end()

	Records the training loss for the latest volume batch

	Return type:

	None

	
on_epoch_begin()

	Prepare to track new loss and snapshot the plots if training

	Return type:

	None

	
on_epoch_end()

	If validation epoch finished, record validation losses, compute info and update plots

	Return type:

	None

	
on_train_begin()

	Prepare for new training

	Return type:

	None

	
on_train_end()

	Cleans up plots, and optionally creates a gif of the training history

	Return type:

	None

	
on_volume_batch_end()

	Grabs the validation losses for the latest volume batch

	Return type:

	None

	
on_volume_end()

	Grabs the validation sub-losses for the latest volume

	Return type:

	None

	
print_losses()

	Print training and validation losses for the last epoch

	Return type:

	None

	
style = {'rc': {'patch.edgecolor': 'none'}, 'style': 'whitegrid'}

	

	
tk_col = 'black'

	

	
tk_sz = 16

	

	
update_plot()

	Updates the plot(s).

	Return type:

	None

	
w_mid = 14.222222222222221

	

	
class tomopt.optimisation.callbacks.monitors.PanelMetricLogger(gif_filename='optimisation_history.gif', gif_length=10.0, show_plots=False)

	Bases: MetricLogger

Logger for use with PanelDetectorLayer s

	Parameters:

	
	gif_filename (Optional[str]) – optional savename for recording a gif of the optimisation process (None -> no gif)
The savename will be appended to the callback savepath

	gif_length (float) – If saving gifs, controls the total length in seconds

	show_plots (bool) – whether to provide live plots during optimisation in notebooks

	
update_plot()

	Updates the plot(s).

	Return type:

	None

tomopt.optimisation.callbacks.opt_callbacks module

	
class tomopt.optimisation.callbacks.opt_callbacks.EpochSave

	Bases: Callback

Saves the state of the volume at the end of each training epoch to a unique file.
This can be used to load a specifc state to either be used, or to resume training.

	
on_epoch_end()

	Runs when a training or validations epoch ends.

	Return type:

	None

	
class tomopt.optimisation.callbacks.opt_callbacks.OneCycle(opt_name, warmup_length, init_lr=None, init_mom=None, mid_lr=None, mid_mom=None, final_lr=None, final_mom=None)

	Bases: AbsOptSchedule

Callback implementing Smith 1-cycle evolution for lr and momentum (beta_1) https://arxiv.org/abs/1803.09820

	In the warmup phase:
	Learning rate is increased from init_lr to mid_lr,
Momentum is decreased from init_mom to mid_mom, to stabilise the use of high LRs

	In the convergence phase:
	Learning rate is decreased from mid_lr to final_lr,
Momentum is increased from mid_mom to final_mom

Setting the learning rate or momentum here will override the values specified when instantiating the VolumeWrapper.
learning rate or momentum arguments can be None to avoid annealing or overriding their values.

	Parameters:

	
	opt_name (str) – name of optimiser that should be affected by the scheduler

	warmup_length (int) – number of epochs to use for the warmup phase

	init_lr (Optional[float]) – initial learning rate (low)

	init_mom (Optional[float]) – initial momentum (high)

	mid_lr (Optional[float]) – nominal learning rate (high),

	mid_mom (Optional[float]) – nominal momentum (moderate),

	final_lr (Optional[float]) – final learning rate (low),

	final_mom (Optional[float]) – final momentum (high)

	
on_epoch_end()

	Runs when a training or validations epoch ends.

	Return type:

	None

	
schedule()

	Compute LR and momentum as a function of iter_cnt, according to defined ranges.

	Return type:

	Tuple[Optional[float], Optional[float]]

tomopt.optimisation.callbacks.pred_callbacks module

	
class tomopt.optimisation.callbacks.pred_callbacks.PredHandler

	Bases: Callback

Default callback for predictions. Collects predictions and true voxelwise X0 pairs for a range of volumes and returns them as list of tuples of numpy arrays
when get_preds() is called.

	
get_preds()

	
	Return type:

	List[Tuple[ndarray, ndarray]]

	Returns:

	List of predicted and target pairs

	
on_pred_begin()

	Prepares to record predictions

	Return type:

	None

	
on_x0_pred_end()

	Records predictions and true volume layout for the latest volume

	Return type:

	None

	
class tomopt.optimisation.callbacks.pred_callbacks.Save2HDF5PredHandler(path, use_volume_target, overwrite=False, x02id=None, compression='lzf')

	Bases: VolumeTargetPredHandler

Saves predictions and targets to an HDF5 file, rather than caching and returning them.
Samples are written incrementally. Can optionally save volume targets rather than voxel-wise X0 targets
If an x02id lookup is provided, it transforms the target from an X0 value to a material class ID.

	Parameters:

	
	path (Path) – savename of file to save predictions and targets

	use_volume_target (bool) – if True, saves the volume target value instead of the volume X0s

	overwrite (bool) – if True will overwrite existing files with the same path, otherwise will append to them

	x02id (Optional[Dict[float, int]]) – optional map from X0 values to class IDs

	compression (Optional[str]) – optional string representation of any compression to use when saving data

	
on_x0_pred_end()

	Records predictions and true volume layout or target for the latest volume

	Return type:

	None

	
class tomopt.optimisation.callbacks.pred_callbacks.VolumeTargetPredHandler(x02id=None)

	Bases: PredHandler

Returns the volume target as the target value, rather than the voxel-wise X0s.
If an x02id lookup is provided, it transforms the target from an X0 value to a material class ID.

	Parameters:

	x02id (Optional[Dict[float, int]]) – optional map from X0 values to class IDs

	
on_x0_pred_end()

	Records predictions and volume target for the latest volume

	Return type:

	None

tomopt.optimisation.callbacks.warmup_callbacks module

	
class tomopt.optimisation.callbacks.warmup_callbacks.CostCoefWarmup(n_warmup)

	Bases: WarmupCallback

Sets a more stable cost coefficient in the AbsDetectorLoss
by averaging the inference-error component for several epochs.
During this warm-up monitoring phase, the detectors will be kept fixed.

	Parameters:

	n_warmup (int) – number of training epochs to wait before setting the cost coefficient

	
on_epoch_end()

	If enough epochs have past, the overall median inference-error is computed and used to set the cost coefficient in the loss.

	Return type:

	None

	
on_volume_end()

	If training, grabs the inference-error for the latest volume

	Return type:

	None

	
class tomopt.optimisation.callbacks.warmup_callbacks.OptConfig(n_warmup, rates)

	Bases: WarmupCallback

Allows the user to specify the desired update steps for parameters in physical units.
Over the course of several warm-up epochs the gradients on the parameters are monitored, after which suitable learning rates for the optimisers are set,
such that the parameters will move by the desired amount every update.
During the warm-up, the detectors will not be updated as optimiser learning rates will be set to zero.

The calculation here does not account for the effect of the optimiser’s momentum, nor scheduling and adaption of learning rates, and so the actual update rates may be different from the desired ones.

	Parameters:

	
	n_warmup (int) – number of training epochs to wait before setting learning rates

	rates (Dict[str, float]) – dictionary of desired update rates for the parameters
The keys are the names of the optimisers specified in the optimiser dictionary of the wrapper.
The values are the desired update rates for the parameters in physical units.
For example, if the optimiser is SGD, and the parameter is the xy position of a panel, then the update rate should be in metres.
The parameters that are being optimisered are expected to be found in the zeroth parameter group of the optimiser, i.e. wrapper.opts[opt].param_groups[0][‘params’].
This implies that the optimiser is expected to have only one parameter group.

	Example::
	>>> OptConfig(n_warmup=2, rates={'xy_pos_opt':xy_pos_rate, 'z_pos_opt':z_pos_rate, 'xy_span_opt':xy_span_rate})

	
on_backwards_end()

	Grabs training gradients from detector parameters

	Return type:

	None

	
on_epoch_end()

	When enough training epochs have passed, sets suitable learning rates for the optimisers based on the median gradients and desired update rates

	Return type:

	None

	
class tomopt.optimisation.callbacks.warmup_callbacks.PostWarmupCallback

	Bases: Callback

Callback class that waits for all WarmupCallback obejcts to finish their warmups before activating.

	
check_warmups()

	When all WarmupCallbacks have finished, sets the callback to be active.

	Return type:

	None

	
on_epoch_begin()

	Checks to see whether the callback should be active.

	Return type:

	None

	
on_train_begin()

	Prepares for new training

	Return type:

	None

	
class tomopt.optimisation.callbacks.warmup_callbacks.WarmupCallback(n_warmup)

	Bases: Callback

Warmup callbacks act at the start of training to track and set parameters based on the initial state of the detector.
During warmup, optimisation of the detector is prevented, via a flag.
If multiple warmup callbacks are present, they will wait to warmup according to the order they are provided in.
Once the last warmup callback finished, the flag will be set to allow the detectors to be optimised.
When a WarmupCallback is warming up, its warmup_active attribute will be True.

Important

When inheriting from WarmupCallback, the super methods of on_train_begin, on_epoch_begin, and on_epoch_end must be called.

	Parameters:

	n_warmup (int) – number of training epochs over-which to warmup

	
check_warmups()

	If a WarmupCallback has finished, then its warmup_active is set to False,
and the next WarmupCallback will have its warmup_active is set to True.
If the finishing callback was the last WarmupCallback, then the “skip optimisation” flag is unset.

	Return type:

	None

	
on_epoch_begin()

	Ensures that when one WarmupCallback has finished, either the next is called, or the detectors are set to be optimised.

	Return type:

	None

	
on_epoch_end()

	After a training epoch is finished, increments the number of epochs that the callback has been warming up, provided it is active.

	Return type:

	None

	
on_train_begin()

	Prepares to warmup

	Return type:

	None

tomopt.optimisation.data package

Submodules

tomopt.optimisation.data.passives module

	
class tomopt.optimisation.data.passives.AbsBlockPassiveGenerator(volume, block_size, block_size_max_half=None, materials=None)

	Bases: AbsPassiveGenerator

Abstract base class for classes that generate new passive layouts which contain a single cuboid of material (block).

	The _generate() method should be overridden to return:
	
	A function that provides an xy tensor for a given layer when called with its z position, length and width, and size.

	An optional “target” value for the layout

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

The block will be centred randomly in the volume, and can either be of fixed or random size.

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	block_size (Optional[Tuple[float, float, float]]) – if set, will generate blocks of the specified size and random orientation, otherwise will randomly set the size of the blocks

	block_size_max_half (Optional[bool]) – if True and block_size is None, the maximum size of blocks will be set to half the size of the passive volume

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

	
class tomopt.optimisation.data.passives.AbsPassiveGenerator(volume, materials=None)

	Bases: object

Abstract base class for classes that generate new passive layouts.

	The _generate() method should be overridden to return:
	
	A function that provides an xy tensor for a given layer when called with its z position, length and width, and size.

	An optional “target” value for the layout

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

	
generate()

	
	Return type:

	Callable[[Tensor, Tensor, float], Tensor]

	Returns:

	The layout function and no target

	
get_data()

	
	Returns:

	A function that provides an xy tensor for a given layer when called with its z position, length and width, and size.
Target: An optional “target” value for the layout

	Return type:

	RadLengthFunc

	
class tomopt.optimisation.data.passives.BlockPresentPassiveGenerator(volume, block_size, block_size_max_half=None, materials=None)

	Bases: AbsBlockPassiveGenerator

Generates new passive layouts which contain a single cuboid of material (block) of random material against a fixed background material.
Blocks are always present, but can potentially be of the same material as the background.
The target for the volumes is the X0 of the block material.
The background material for the background will always be the zeroth material provided during initialisation.

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

The block will be centred randomly in the volume, and can either be of fixed or random size.

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	block_size (Optional[Tuple[float, float, float]]) – if set, will generate blocks of the specified size and random orientation, otherwise will randomly set the size of the blocks

	block_size_max_half (Optional[bool]) – if True and block_size is None, the maximum size of blocks will be set to half the size of the passive volume

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

	
class tomopt.optimisation.data.passives.PassiveYielder(passives, n_passives=None, shuffle=True)

	Bases: object

	Dataset class that can either:
	Yield from a set of pre-specified passive-volume layouts, and optional targets
Generate and yield random layouts and optional targets from a provided generator

	Parameters:

	
	passives (Union[List[Union[Tuple[Callable[[Tensor, Tensor, float], Tensor], Optional[Tensor]], Callable[[Tensor, Tensor, float], Tensor]]], AbsPassiveGenerator]) – Either a list of passive-volume functions (and optional targets together in a tuple), or a passive-volume generator

	n_passives (Optional[int]) – if a generator is used, this determines the number of volumes to generator per epoch in training, or in total when predicting

	shuffle (bool) – If a list of pre-specified layouts is provided, their order will be shuffled if this is True

	
class tomopt.optimisation.data.passives.RandomBlockPassiveGenerator(volume, block_size, sort_x0, enforce_diff_mat, block_size_max_half=None, materials=None)

	Bases: AbsBlockPassiveGenerator

Generates new passive layouts which contain a single cuboid of material (block) of random material against a random background material.
Blocks are always present, but can potentially be of the same material as the background.
The target for the volumes is the X0 of the block material.

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

The block will be centred randomly in the volume, and can either be of fixed or random size.

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	block_size (Optional[Tuple[float, float, float]]) – if set, will generate blocks of the specified size and random orientation, otherwise will randomly set the size of the blocks

	sort_x0 (bool) – if True, the block will always have a lower X0 than the background, unless they are of the same material

	enforce_diff_mat (bool) – if True, the block will always be of a different material to the background

	block_size_max_half (Optional[bool]) – if True and block_size is None, the maximum size of blocks will be set to half the size of the passive volume

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

	
class tomopt.optimisation.data.passives.VoxelPassiveGenerator(volume, materials=None)

	Bases: AbsPassiveGenerator

Generates new passive layouts where every voxel is of a random material.

The generate() method will return only the layout function and no target
The get_data() method will return both the layout function and the target

	Parameters:

	
	volume (Volume) – Volume that the passive layout will be loaded into

	materials (Optional[List[str]]) – list of material names that can be used in the volume, None -> all materials known to TomOpt

tomopt.optimisation.loss package

Submodules

tomopt.optimisation.loss.loss module

	
class tomopt.optimisation.loss.loss.AbsDetectorLoss(*, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: Module

Abstract base class from which all loss functions should inherit.

	The loss consists of:
	
	A component that quantifies the performance of the predictions made via the detectors

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The performance component (error) should ideally be as close to the final task that the detector will be performing,
and will depend on the output of the inference algorithm used

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

Inheriting classes will need to at least override the _get_inference_loss method.

	Parameters:

	
	target_budget (Optional[float]) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
forward(pred, volume)

	Computes the loss for the predictions of a single volume using the current state of the detector

	Parameters:

	
	pred (Tensor) – the predictions from the inference

	volume (Volume) – Volume containing the passive volume that was being predicted and the detector being optimised

	Return type:

	Tensor

	Returns:

	The loss for the predictions and detector

	
class tomopt.optimisation.loss.loss.AbsMaterialClassLoss(*, x02id, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsDetectorLoss

Abstract base class for cases in which the task is to classify materials in the passive volumes, or some other aspect of the volumes.
The targets returned by the volume are expected to be float X0s, and are converted to class IDs using an X0 to ID map.

	The loss consists of:
	
	A component that quantifies the performance of the predictions made via the detectors

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The performance component (error) should ideally be as close to the final task that the detector will be performing,
and will depend on the output of the inference algorithm used

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

Inheriting classes will need to at least override the _get_inference_loss method.

	Parameters:

	
	x02id (Dict[float, int]) – Dictionary mapping float X0 targets to integer class IDs

	target_budget (float) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
class tomopt.optimisation.loss.loss.VolumeClassLoss(*, x02id, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsMaterialClassLoss

Loss function designed for tasks where some overall target of the passive volume must be classified, and the target of the volume is encoded as a float X0.
E.g. what is the material of a large block in the volume.

	The Inference-error component of the loss depends on shape of predictions provided:
	If the predictions are of shape (1,classes,voxels), they will be interpreted as multi-class log-probabilities and the negative log-likelihood computed
If the predictions are of shape (1,1,voxels), they will be interpreted as binary class probabilities and the binary cross-entropy computed

The ordering of the “flattened” voxels should match that of volume.get_rad_cube().flatten()

	The total loss consists of:
	
	The NLL or BCE

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

	Parameters:

	
	x02id (Dict[float, int]) – Dictionary mapping float X0 targets to integer class IDs

	target_budget (float) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
class tomopt.optimisation.loss.loss.VolumeIntClassLoss(*, targ2int, pred_int_start, use_mse, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsDetectorLoss

Loss function designed for tasks where some overall integer target of the passive volume must be classified,
and the values of this target are quantifiably comparable (i.e. the integers are treatable as numbers not just categorical codes).
E.g. Predicting how many layers of the passive volume are filled with a given material.

The Inference-error component of the loss computed as the integer_class_loss().
Predictions should be provided as probabilities for every possible integer target
The target from the volume can be converted to an integer (e.g. height to layer ID) using a targ2int function

	The total loss consists of:
	
	The integer class loss (ICL)

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

	Parameters:

	
	target_budget (float) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
class tomopt.optimisation.loss.loss.VolumeMSELoss(*, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsDetectorLoss

TODO: Add unit tests and docs

	
class tomopt.optimisation.loss.loss.VoxelClassLoss(*, x02id, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsMaterialClassLoss

Loss function designed for tasks where the voxelwise material class ID must be classified.
Inference-error component of the loss is the negative log-likelihood on log class-probabilities, averaged over all voxels (NLL)

Predictions should be provided as log-softmaxed class probabilities per voxel, with shape (1,classes,voxels).
The ordering of the “flattened” voxels should match that of volume.get_rad_cube().flatten()

	The total loss consists of:
	
	The NLL

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

	Parameters:

	
	x02id (Dict[float, int]) – Dictionary mapping float X0 targets to integer class IDs

	target_budget (float) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

	
class tomopt.optimisation.loss.loss.VoxelX0Loss(*, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: AbsDetectorLoss

Loss function designed for tasks where the voxelwise X0 value must be predicted as floats.
Inference-error component of the loss is the squared-error on X0 predictions, averaged over all voxels (MSE)

	The total loss consists of:
	
	The MSE

	An optional component that relates to the cost of the detector

The total loss is the sum of these, with the cost-component being rescaled by a coefficient characterising its relative importance.

The optional cost component is included as a budget weighting, which gradually increases with the current cost up to a predefined budget,
after which it increases rapidly, but smoothly.
Be default, the budget is based on a sigmoid centred at the budget, which linearly increases after the budget is exceeded.
A less steep version is selectable, which flattens out slightly for high costs.

	Parameters:

	
	target_budget (Optional[float]) – If not None, will include a cost component in the loss configured for the specified budget.
Should be specified in the same currency units as the detector cost.

	budget_smoothing (float) – controls how quickly the budget term rises with cost; lower values => slower rise

	cost_coef (Union[Tensor, float, None]) – Balancing coefficient used to multiply the budget term prior to its addition to the error component of the loss.
If set to None, it will be set equal to the inference-error computed the first time the loss is computed

	steep_budget (bool) – If True, will use a linearly increasing budget term when the budget is exceeded,
otherwise the budget term will flatten off for very high costs

	debug (bool) – If True, will print out information about the loss whenever it is evaluated

tomopt.optimisation.loss.sub_losses module

	
tomopt.optimisation.loss.sub_losses.integer_class_loss(int_probs, target_int, pred_start_int, use_mse, weight=None, reduction='mean')

	Loss for classifying integers, when regression is not applicable.
It assumed that the the integers really are quantifiably comparable, and not categorical codes of classes.

Like multiclass-classification, predictions are a probabilities for each possible integer,
but the ICL aims to penalise close predictions less than far-off ones:
For a target of 3 and a close prediction of softmax([1,3,10,5,5,3,1]) and a far-off prediction of softmax([10,3,1,5,5,3,1]),
the categorical cross-entropy produces the same loss for both predictions (5.0154) despite the close prediction having a higher probability near the target.

ICL instead computes the absolute error, or squared error, between each of the possible integers and the true target.
These errors are then normalised, weighted by the predicted probabilities, and summed.
I.e. integers close to the target have a lower error, and these are given greater weight in the sum if they have a higher probability.

For the example, the ICL produces a loss of 1.0007 for the close prediction, and 8.8773 for the far-off one.

	Parameters:

	
	int_probs (Tensor) – (*,integers) tensor of predicted probabilities

	target_int (Tensor) – (*) tensor of target integers

	pred_start_int (int) – the integer that the zeroth probability in predictions corresponds to

	use_mse (bool) – whether to compute errors as absolute or squared

	weight (Optional[Tensor]) – Optional (*) tensor of multiplicative weights for the unreduced ICLs

	reduction (str) – ‘mean’ return the average ICL, ‘sum’ sum the ICLs, ‘none’, return the individual ICLs

	Return type:

	Tensor

tomopt.optimisation.wrapper package

Submodules

tomopt.optimisation.wrapper.volume_wrapper module

	
class tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper(volume, *, partial_opts, loss_func=None, partial_scatter_inferrer, partial_volume_inferrer, mu_generator=None)

	Bases: object

Abstract base class for optimisation volume wrappers.
Inheriting classes will need to override _build_opt()
according to the detector parameters that need to be optimised.

Volume wrappers are designed to contain a Volume and provide means of optimising the detectors it contains,
via their fit() method.

Wrappers also provide for various quality-of-life methods, such as saving and loading detector configurations,
and computing predictions with a fixed detector (predict())

Fitting of a detector proceeds as training and validation epochs, each of which contains multiple batches of passive volumes.
For each volume in a batch, the loss is evaluated using multiple batches of muons.
The whole loop is:

	
	for epoch in n_epochs:
	
	loss = 0

	
	for p, passive in enumerate(trn_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	Backpropagate loss and update detector parameters

	loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = 0

	
	for p, passive in enumerate(val_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to val_loss

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = val_loss/p

	In implementation, the loop is broken up into several functions:
	
	_fit_epoch() runs one full epoch of volumes and updates for both training and validation

	_scan_volumes() runs over all training/validation volumes, updating parameters when necessary

	_scan_volume() irradiates a single volume with muons multiple batches, and computes the loss for that volume

The optimisation and prediction loops are supported by a stateful callback mechanism.
The base callback is Callback, which can interject at various points in the loops.
All aspects of the optimisation and prediction are stored in a FitParams data class,
since the callbacks are also stored there, and the callbacks have a reference to the wrapper, they are able to read/write to the FitParams and be
aware of other callbacks that are running.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	Parameters:

	
	volume (Volume) – the volume containing the detectors to be optimised

	partial_opts (Dict[str, Callable[[Iterator[Parameter]], Optimizer]]) – dictionary of uninitialised optimisers to be associated with the detector parameters, via _build_opt

	loss_func (Optional[AbsDetectorLoss]) – Optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	
fit(n_epochs, passive_bs, n_mu_per_volume, mu_bs, trn_passives, val_passives, cbs=None, cb_savepath=Path('train_weights'))

	Runs the fitting loop for the detectors over a specified number of epochs, using the provided volumes or volume generators.
The optimisation loop can be supported by callbacks.

	Parameters:

	
	n_epochs (int) – number of epochs to run for (a training and validation epoch only counts as one ‘epoch)

	passive_bs (int) – number of passive volumes to use per volume batch (detector updates occur after every volume batch in training mode)

	n_mu_per_volume (int) – number of muons to use in total when inferring the target of a single volume

	mu_bs (int) – number of muons to use per muon batch; multiple muon batches will be used until n_mu_per_volume is reached

	trn_passives (PassiveYielder) – passive volumes to use for optimising the detector

	val_passives (Optional[PassiveYielder]) – optional passive volumes to use for evaluating the detector

	cbs (Optional[List[Callback]]) – optional list of callbacks to use

	cb_savepath (Path) – location where callbacks should write/save any information

	Return type:

	List[Callback]

	Returns:

	The list of callbacks

	
get_detectors()

	
	Return type:

	List[AbsDetectorLayer]

	Returns:

	A list of all AbsDetectorLayer s in the volume, in the order of layers (normally decreasing z position)

	
get_opt_lr(opt)

	Returns the learning rate of the specified optimiser.

	Parameters:

	opt (str) – string name of the optimiser requested

	Return type:

	float

	Returns:

	The learning rate of the specified optimiser

	
get_opt_mom(opt)

	Returns the momentum coefficient/beta_1 of the specified optimiser.

	Parameters:

	opt (str) – string name of the optimiser requested

	Return type:

	float

	Returns:

	The momentum coefficient/beta_1 of the specified optimiser

	
get_param_count(trainable=True)

	Return number of parameters in detector.

	Parameters:

	trainable (bool) – if true (default) only count trainable parameters

	Return type:

	int

	Returns:

	Number of (trainable) parameters in detector

	
load(name)

	Loads saved volume and optimiser parameters from a file.

	Parameters:

	name (str) – file to load

	Return type:

	None

	
opts: Dict[str, Optimizer]

	

	
predict(passives, n_mu_per_volume, mu_bs, pred_cb=<tomopt.optimisation.callbacks.pred_callbacks.PredHandler object>, cbs=None, cb_savepath=Path('train_weights'))

	Uses the detectors to predict the provided volumes
The prediction loop can be supported by callbacks.

	Parameters:

	
	passives (PassiveYielder) – passive volumes to predict

	n_mu_per_volume (int) – number of muons to use in total when inferring the target of a single volume

	mu_bs (int) – number of muons to use per muon batch; multiple muon batches will be used until n_mu_per_volume is reached

	pred_cb (PredHandler) – the prediction callback to use for recording predictions

	cbs (Optional[List[Callback]]) – optional list of callbacks to use

	cb_savepath (Path) – location where callbacks should write/save any information

	Return type:

	List[Tuple[ndarray, ndarray]]

	Returns:

	The object returned by the pred_cb’s get_preds method

	
save(name)

	Saves the volume and optimiser parameters to a file.

	Parameters:

	name (str) – savename for the file

	Return type:

	None

	
set_opt_lr(lr, opt)

	Sets the learning rate of the specified optimiser.

	Parameters:

	
	lr (float) – new learning rate for the optimiser

	opt (str) – string name of the optimiser requested

	Return type:

	None

	
set_opt_mom(mom, opt)

	Sets the learning rate of the specified optimiser.

	Parameters:

	
	mom (float) – new momentum coefficient/beta_1 for the optimiser

	opt (str) – string name of the optimiser requested

	Return type:

	None

	
class tomopt.optimisation.wrapper.volume_wrapper.ArbVolumeWrapper(volume, *, opts, loss_func=None, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Bases: AbsVolumeWrapper

Arbitrary volume wrapper in which the user supplies pre-instantiated optimisers for whatever paramters should be optimised.

Wrappers also provide for various quality-of-life methods, such as saving and loading detector configurations,
and computing predictions with a fixed detector (predict())

Fitting of a detector proceeds as training and validation epochs, each of which contains multiple batches of passive volumes.
For each volume in a batch, the loss is evaluated using multiple batches of muons.
The whole loop is:

	
	for epoch in n_epochs:
	
	loss = 0

	
	for p, passive in enumerate(trn_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	Backpropagate loss and update detector parameters

	loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = 0

	
	for p, passive in enumerate(val_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to val_loss

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = val_loss/p

	In implementation, the loop is broken up into several functions:
	
	_fit_epoch() runs one full epoch of volumes
	and updates for both training and validation

	_scan_volumes() runs over all training/validation volumes,
	updating parameters when necessary

	_scan_volume() irradiates a single volume with muons multiple batches,
	and computes the loss for that volume

The optimisation and prediction loops are supported by a stateful callback mechanism.
The base callback is Callback, which can interject at various points in the loops.
All aspects of the optimisation and prediction are stored in a FitParams data class,
since the callbacks are also stored there, and the callbacks have a reference to the wrapper, they are able to read/write to the FitParams and be
aware of other callbacks that are running.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	Parameters:

	
	volume (Volume) – the volume containing the detectors to be optimised

	opts (Dict[str, Optimizer]) – Dict of strings mapping to initialised optimisers

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	
classmethod from_save(name, *, volume, opts, loss_func, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Instantiates a new PanelVolumeWrapper and loads saved detector and optimiser parameters

	Parameters:

	
	name (str) – file name with saved detector and optimiser parameters

	volume (Volume) – the volume containing the detectors to be optimised

	opts (Dict[str, Optimizer]) – Dict of strings mapping to initialised optimisers

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	Return type:

	AbsVolumeWrapper

	
class tomopt.optimisation.wrapper.volume_wrapper.FitParams(**kwargs)

	Bases: object

Data class used for storing all aspects of optimisation and prediction when working with
AbsVolumeWrapper

	Parameters:

	kwargs (Any) – objects to be stored

	
cb_savepath: Optional[Path] = None

	

	
cbs: Optional[List[Callback]] = None

	

	
cyclic_cbs: Optional[List[CyclicCallback]] = None

	

	
device: device = device(type='cpu')

	

	
epoch: int = 0

	

	
epoch_bar: Optional[ProgressBar] = None

	

	
loss_val: Optional[Tensor] = None

	

	
mean_loss: Optional[Tensor] = None

	

	
metric_cbs: Optional[List[EvalMetric]] = None

	

	
metric_log: Optional[MetricLogger] = None

	

	
mu: Optional[MuonBatch] = None

	

	
mu_bs: Optional[int] = None

	

	
n_epochs: Optional[int] = None

	

	
n_mu_per_volume: Optional[int] = None

	

	
passive_bar: Union[NBProgressBar, ConsoleProgressBar, None] = None

	

	
passive_bs: Optional[int] = None

	

	
pred: Optional[Tensor] = None

	

	
sb: Optional[ScatterBatch] = None

	

	
skip_opt_step: bool = False

	

	
state: Optional[str] = None

	

	
stop: Optional[bool] = None

	

	
trn_passives: Optional[PassiveYielder] = None

	

	
tst_passives: Optional[PassiveYielder] = None

	

	
val_passives: Optional[PassiveYielder] = None

	

	
volume_id: Optional[int] = None

	

	
volume_inferrer: Optional[AbsVolumeInferrer] = None

	

	
warmup_cbs: Optional[List[WarmupCallback]] = None

	

	
class tomopt.optimisation.wrapper.volume_wrapper.HeatMapVolumeWrapper(volume, *, mu_opt, norm_opt, sig_opt, z_pos_opt, loss_func, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Bases: AbsVolumeWrapper

Volume wrapper for volumes with DetectorHeatMap-based detectors.

Volume wrappers are designed to contain a Volume and provide means of optimising the detectors it contains,
via their fit() method.

Wrappers also provide for various quality-of-life methods, such as saving and loading detector configurations,
and computing predictions with a fixed detector (predict())

Fitting of a detector proceeds as training and validation epochs, each of which contains multiple batches of passive volumes.
For each volume in a batch, the loss is evaluated using multiple batches of muons.
The whole loop is:

	
	for epoch in n_epochs:
	
	loss = 0

	
	for p, passive in enumerate(trn_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	Backpropagate loss and update detector parameters

	loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = 0

	
	for p, passive in enumerate(val_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to val_loss

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = val_loss/p

	In implementation, the loop is broken up into several functions:
	
	_fit_epoch() runs one full epoch of volumes
	and updates for both training and validation

	_scan_volumes() runs over all training/validation volumes,
	updating parameters when necessary

	_scan_volume() irradiates a single volume with muons multiple batches,
	and computes the loss for that volume

The optimisation and prediction loops are supported by a stateful callback mechanism.
The base callback is Callback, which can interject at various points in the loops.
All aspects of the optimisation and prediction are stored in a FitParams data class,
since the callbacks are also stored there, and the callbacks have a reference to the wrapper, they are able to read/write to the FitParams and be
aware of other callbacks that are running.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	Parameters:

	
	volume (Volume) – the volume containing the detectors to be optimised

	mu_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy position of Gaussians

	norm_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the normalisation of Gaussians

	sig_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the scale of Gaussians

	z_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the z position of panels

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	
classmethod from_save(name, *, volume, mu_opt, norm_opt, sig_opt, z_pos_opt, loss_func, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Instantiates a new HeatMapVolumeWrapper and loads saved detector and optimiser parameters

	Parameters:

	
	name (str) – file name with saved detector and optimiser parameters

	volume (Volume) – the volume containing the detectors to be optimised

	mu_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy position of Gaussians

	norm_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the normalisation of Gaussians

	sig_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the scale of Gaussians

	z_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the z position of panels

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	Return type:

	AbsVolumeWrapper

	
class tomopt.optimisation.wrapper.volume_wrapper.PanelVolumeWrapper(volume, *, xy_pos_opt, z_pos_opt, xy_span_opt, budget_opt=None, loss_func=None, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Bases: AbsVolumeWrapper

Volume wrapper for volumes with DetectorPanel-based detectors.

Volume wrappers are designed to contain a Volume and provide means of optimising the detectors it contains,
via their fit() method.

Wrappers also provide for various quality-of-life methods, such as saving and loading detector configurations,
and computing predictions with a fixed detector (predict())

Fitting of a detector proceeds as training and validation epochs, each of which contains multiple batches of passive volumes.
For each volume in a batch, the loss is evaluated using multiple batches of muons.
The whole loop is:

	
	for epoch in n_epochs:
	
	loss = 0

	
	for p, passive in enumerate(trn_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	Backpropagate loss and update detector parameters

	loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = 0

	
	for p, passive in enumerate(val_passives):
	
	load passive into passive volume

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	Irradiate volume with mu_bs muons

	Infer passive volume

	Compute loss based on precision and cost, and add to val_loss

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	val_loss = val_loss/p

	In implementation, the loop is broken up into several functions:
	
	_fit_epoch() runs one full epoch of volumes
	and updates for both training and validation

	_scan_volumes() runs over all training/validation volumes,
	updating parameters when necessary

	_scan_volume() irradiates a single volume with muons multiple batches,
	and computes the loss for that volume

The optimisation and prediction loops are supported by a stateful callback mechanism.
The base callback is Callback, which can interject at various points in the loops.
All aspects of the optimisation and prediction are stored in a FitParams data class,
since the callbacks are also stored there, and the callbacks have a reference to the wrapper, they are able to read/write to the FitParams and be
aware of other callbacks that are running.

Accounting for the interjection calls (on_*_begin & on_*_end), the full optimisation loop is:

	Associate callbacks with wrapper (set_wrapper)

	on_train_begin

	
	for epoch in n_epochs:
	
	state = “train”

	on_epoch_begin

	
	for p, passive in enumerate(trn_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	load passive into passive volume

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	Zero parameter gradients

	on_backwards_begin

	Backpropagate loss and compute parameter gradients

	on_backwards_end

	Update detector parameters

viii. Ensure detector parameters are within physical boundaries (AbsDetectorLayer.conform_detector)
viv. loss = 0

	
	if len(trn_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	state = “valid”

	on_epoch_begin

	
	for p, passive in enumerate(val_passives):
	
	
	if p % passive_bs == 0:
	
	on_volume_batch_begin

	loss = 0

	on_volume_begin

	
	for muon_batch in range(n_mu_per_volume//mu_bs):
	
	on_mu_batch_begin

	Irradiate volume with mu_bs muons

	Infer scatter locations

	on_scatter_end

	Infer x0 and append to list of x0 predictions

	on_mu_batch_end

	on_x0_pred_begin

	Compute overall x0 prediction

	on_x0_pred_end

	Compute loss based on precision and cost, and add to loss

	
	if p`+1 % `passive_bs == 0:
	
	loss = loss/passive_bs

	on_volume_batch_end

	
	if len(val_passives)-(p`+1) < `passive_bs:
	
	Break

	on_epoch_end

	on_train_end

	Parameters:

	
	volume (Volume) – the volume containing the detectors to be optimised

	xy_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy position of panels

	z_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the z position of panels

	xy_span_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy size of panels

	budget_opt (Optional[Callable[[Iterator[Parameter]], Optimizer]]) – optional uninitialised optimiser to be used for adjusting the fractional assignment of budget to the panels

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	
classmethod from_save(name, *, volume, xy_pos_opt, z_pos_opt, xy_span_opt, budget_opt=None, loss_func, partial_scatter_inferrer=<class 'tomopt.inference.scattering.ScatterBatch'>, partial_volume_inferrer=<class 'tomopt.inference.volume.PanelX0Inferrer'>, mu_generator=None)

	Instantiates a new PanelVolumeWrapper and loads saved detector and optimiser parameters

	Parameters:

	
	name (str) – file name with saved detector and optimiser parameters

	volume (Volume) – the volume containing the detectors to be optimised

	xy_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy position of panels

	z_pos_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the z position of panels,

	xy_span_opt (Callable[[Iterator[Parameter]], Optimizer]) – uninitialised optimiser to be used for adjusting the xy size of panels,

	budget_opt (Optional[Callable[[Iterator[Parameter]], Optimizer]]) – optional uninitialised optimiser to be used for adjusting the fractional assignment of budget to the panels

	loss_func (Optional[AbsDetectorLoss]) – optional loss function (required if planning to optimise the detectors)

	partial_scatter_inferrer (Type[ScatterBatch]) – uninitialised class to be used for inferring muon scatter variables and trajectories

	partial_volume_inferrer (Type[AbsVolumeInferrer]) – uninitialised class to be used for inferring volume targets

	mu_generator (Optional[AbsMuonGenerator]) – Optional generator class for muons. If None, will use from_volume().

	Return type:

	AbsVolumeWrapper

tomopt.plotting package

Submodules

tomopt.plotting.appearance module

tomopt.plotting.diagnostics module

	
tomopt.plotting.diagnostics.plot_hit_density(hit_df, savename=None)

	Plots the position of muon hits in the detectors, as recorded using HitRecord.

	Parameters:

	
	hit_df (DataFrame) – Dataframe of recorded hits, as returned by get_record()

	savename (Optional[str]) – optional savename to save the plot

	Return type:

	None

	
tomopt.plotting.diagnostics.plot_scatter_density(scatter_df, savename=None)

	Plots the position of PoCAs in the passive volume, as recorded using ScatterRecord.

	Parameters:

	
	scatter_df (DataFrame) – Dataframe of recorded PoCAs, as returned by get_record()

	savename (Optional[str]) – optional savename to save the plot

	Return type:

	None

tomopt.plotting.predictions module

	
tomopt.plotting.predictions.plot_pred_true_x0(pred, true, savename=None)

	Plots the predicted voxelwise X0s compared to the true values of the X0s.
2D plots are produced in xy for layers in z in order of increasing z, i.e. the bottom most layer is the first to be plotted.
TODO: revise this ordering to make it more intuitive

	Parameters:

	
	pred (ndarray) – (z,x,y) array of predicted X0s

	true (ndarray) – (z,x,y) array of true X0s

	savename (Optional[str]) – optional savename for saving the plot

	Return type:

	None

tomopt.benchmarks package

Subpackages

	tomopt.benchmarks.ladle_furnace package

	tomopt.benchmarks.small_walls package

	tomopt.benchmarks.u_lorry package

tomopt.benchmarks.ladle_furnace package

Submodules

tomopt.benchmarks.ladle_furnace.data module

	
class tomopt.benchmarks.ladle_furnace.data.LadleFurnacePassiveGenerator(volume, x0_furnace=0.01782, fill_material='hot liquid steel', slag_material='slag')

	Bases: AbsPassiveGenerator

Research tested only: no unit tests

tomopt.benchmarks.ladle_furnace.inference module

	
class tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer(partial_x0_inferrer, volume, pipeline=['remove_ladle', 'avg_3d', 'avg_layers', 'avg_1d', 'ridge_1d_0', 'negative', 'max_div_min'], add_batch_dim=True, output_probs=True)

	Bases: AbsIntClassifierFromX0

Research tested only: no unit tests

	
static avg_1d(x)

	
	Return type:

	Tensor

	
static avg_3d(x)

	
	Return type:

	Tensor

	
static avg_layers(x)

	
	Return type:

	Tensor

	
static edge_det(x, kernel)

	
	Return type:

	Tensor

	
static gauss_1d(x)

	
	Return type:

	Tensor

	
static gauss_3d(x)

	
	Return type:

	Tensor

	
laplacian_1d(x)

	
	Return type:

	Tensor

	
static max_div_min(x)

	
	Return type:

	Tensor

	
static max_sub_min(x)

	
	Return type:

	Tensor

	
static negative(x)

	
	Return type:

	Tensor

	
prewit_1d(x)

	
	Return type:

	Tensor

	
static remove_ladle(x)

	Assumes ladle is 1 voxel thick

	Return type:

	Tensor

	
ridge_1d_0(x)

	
	Return type:

	Tensor

	
ridge_1d_2(x)

	
	Return type:

	Tensor

	
ridge_1d_4(x)

	
	Return type:

	Tensor

	
ridge_1d_8(x)

	
	Return type:

	Tensor

	
x02probs(vox_preds)

	Inheriting classes must override this method to convert voxelwise X0 predictions to class probabilities

	Parameters:

	vox_preds (Tensor) – (z,x,y) tensor of voxelwise X0 predictions

	Return type:

	Tensor

	Returns:

	(*) tensor of class probabilities

	
class tomopt.benchmarks.ladle_furnace.inference.LinearCorrectionCallback(partial_opt, init_weight=1.0, init_bias=0.0)

	Bases: Callback

Research tested only: no unit tests

	
on_backwards_end()

	Runs when the loss for a batch of passive volumes has been backpropagated, but parameters have not yet been updated.

	Return type:

	None

	
on_train_begin()

	Runs when detector fitting begins.

	Return type:

	None

	
on_volume_batch_begin()

	Runs when a new batch of passive volume layouts is begins.

	Return type:

	None

	
on_x0_pred_end()

	Runs after the volume inferrer has made its final prediction, but before the loss is computed.

	Return type:

	None

	
class tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer(volume, smooth=0.1)

	Bases: AbsVolumeInferrer

Research tested only: no unit tests

Computes fill heigh based on weighted average of z of POCAs

	
compute_efficiency(scatters)

	Computes the per-muon efficiency, given the individual muon hit efficiencies,
as the probability of at least two hits above and below the passive volume.

	Parameters:

	scatters (ScatterBatch) – scatter batch containing muons whose efficiency should be computed

	Return type:

	Tensor

	Returns:

	(muons) tensor of muon efficiencies

	
get_prediction()

	Computes the predicted fill level via a weighted average of POCA locations.

	Returns:

	fill-height prediction [m]

	Return type:

	pred

	
property muon_efficiency: Tensor

	Returns:
(muons,1) tensor of the efficiencies of the muons

	
property muon_poca_xyz: Tensor

	Returns:
(muons,xyz) tensor of PoCA locations

	
property muon_poca_xyz_unc: Tensor

	Returns:
(muons,xyz) tensor of PoCA location uncertainties

	
property n_mu: int

	Returns:
Total number muons included in the inference

	
property pred_height: Tensor

	Returns:
(h) tensor of fill-height prediction

	
property smooth: Tensor

	

tomopt.benchmarks.ladle_furnace.loss module

	
class tomopt.benchmarks.ladle_furnace.loss.LadleFurnaceIntClassLoss(*, pred_int_start=0, use_mse, target_budget, budget_smoothing=10, cost_coef=None, steep_budget=True, debug=False)

	Bases: VolumeIntClassLoss

Research tested only: no unit tests

	
class tomopt.benchmarks.ladle_furnace.loss.SpreadRangeLoss

	Bases: Callback

Research tested only: no unit tests

	
on_volume_batch_begin()

	Runs when a new batch of passive volume layouts is begins.

	Return type:

	None

	
on_volume_batch_end()

	Runs when a batch of passive volume layouts is ends.

	Return type:

	None

	
on_x0_pred_end()

	Runs after the volume inferrer has made its final prediction, but before the loss is computed.

	Return type:

	None

tomopt.benchmarks.ladle_furnace.plotting module

	
tomopt.benchmarks.ladle_furnace.plotting.compare_init_optimised_2(df_start, df_opt_2, NAME)

	
	Return type:

	None

	
tomopt.benchmarks.ladle_furnace.plotting.compare_init_to_optimised(df_start, df_opt, NAME)

	
	Return type:

	None

	
tomopt.benchmarks.ladle_furnace.plotting.compare_optimised_to_baselines(df_bl_1, df_bl_2, df_opt_2, NAME)

	
	Return type:

	None

	
tomopt.benchmarks.ladle_furnace.plotting.compare_raw_init_to_bias_corrected_init(df_start, NAME)

	
	Return type:

	None

tomopt.benchmarks.ladle_furnace.volume module

	
tomopt.benchmarks.ladle_furnace.volume.get_baseline_detector_1(*, res=10000.0, eff=0.9, span=0.8, device=device(type='cpu'))

	
	Return type:

	ModuleList

	
tomopt.benchmarks.ladle_furnace.volume.get_baseline_detector_2(*, res=10000.0, eff=0.9, span=0.8, device=device(type='cpu'))

	
	Return type:

	ModuleList

	
tomopt.benchmarks.ladle_furnace.volume.get_initial_detector(*, res=10000.0, eff=0.9, span=0.8, device=device(type='cpu'))

	
	Return type:

	ModuleList

tomopt.benchmarks.small_walls package

Submodules

tomopt.benchmarks.small_walls.data module

	
class tomopt.benchmarks.small_walls.data.SmallWallsPassiveGenerator(volume, x0_soil=0.2624248696430881, x0_wall=0.08022522418503258, stop_k=10, turn_k=5, min_length=4, min_height=4)

	Bases: AbsPassiveGenerator

tomopt.benchmarks.small_walls.volume module

	
tomopt.benchmarks.small_walls.volume.get_small_walls_volume(size=1, passive_lwh=tensor([10., 10., 10.]), span=4.0, res=10000.0, eff=1.0, det_height=1.0, device=device(type='cpu'))

	
	Return type:

	Volume

	
tomopt.benchmarks.small_walls.volume.get_small_walls_volume_wrapper(size=1, passive_lwh=tensor([10., 10., 10.]), span=4.0, res=10000.0, eff=1.0, det_height=1.0, device=device(type='cpu'))

	
	Return type:

	PanelVolumeWrapper

tomopt.benchmarks.u_lorry package

Submodules

tomopt.benchmarks.u_lorry.data module

	
class tomopt.benchmarks.u_lorry.data.ULorryPassiveGenerator(volume, u_volume, u_prob=0.5, fill_frac=0.8, x0_lorry=0.01757, bkg_materials=['air', 'iron'])

	Bases: AbsPassiveGenerator

Research tested only: no unit tests

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tomopt	

 	
 	
 tomopt.benchmarks.ladle_furnace.data	

 	
 	
 tomopt.benchmarks.ladle_furnace.inference	

 	
 	
 tomopt.benchmarks.ladle_furnace.loss	

 	
 	
 tomopt.benchmarks.ladle_furnace.plotting	

 	
 	
 tomopt.benchmarks.ladle_furnace.volume	

 	
 	
 tomopt.benchmarks.small_walls.data	

 	
 	
 tomopt.benchmarks.small_walls.volume	

 	
 	
 tomopt.benchmarks.u_lorry.data	

 	
 	
 tomopt.core	

 	
 	
 tomopt.inference.scattering	

 	
 	
 tomopt.inference.volume	

 	
 	
 tomopt.muon.generation	

 	
 	
 tomopt.muon.muon_batch	

 	
 	
 tomopt.optimisation.callbacks.callback	

 	
 	
 tomopt.optimisation.callbacks.cyclic_callbacks	

 	
 	
 tomopt.optimisation.callbacks.data_callbacks	

 	
 	
 tomopt.optimisation.callbacks.detector_callbacks	

 	
 	
 tomopt.optimisation.callbacks.diagnostic_callbacks	

 	
 	
 tomopt.optimisation.callbacks.eval_metric	

 	
 	
 tomopt.optimisation.callbacks.grad_callbacks	

 	
 	
 tomopt.optimisation.callbacks.heatmap_gif	

 	
 	
 tomopt.optimisation.callbacks.monitors	

 	
 	
 tomopt.optimisation.callbacks.opt_callbacks	

 	
 	
 tomopt.optimisation.callbacks.pred_callbacks	

 	
 	
 tomopt.optimisation.callbacks.warmup_callbacks	

 	
 	
 tomopt.optimisation.data.passives	

 	
 	
 tomopt.optimisation.loss.loss	

 	
 	
 tomopt.optimisation.loss.sub_losses	

 	
 	
 tomopt.optimisation.wrapper.volume_wrapper	

 	
 	
 tomopt.plotting.appearance	

 	
 	
 tomopt.plotting.diagnostics	

 	
 	
 tomopt.plotting.predictions	

 	
 	
 tomopt.utils	

 	
 	
 tomopt.version	

 	
 	
 tomopt.volume.heatmap	

 	
 	
 tomopt.volume.layer	

 	
 	
 tomopt.volume.panel	

 	
 	
 tomopt.volume.scatter_model	

 	
 	
 tomopt.volume.volume	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	above_gen_hits (tomopt.inference.scattering.ScatterBatch property)

 	above_hit_effs (tomopt.inference.scattering.ScatterBatch property)

 	above_hit_uncs (tomopt.inference.scattering.ScatterBatch property)

 	above_hits (tomopt.inference.scattering.ScatterBatch property)

 	abs2idx() (tomopt.volume.layer.PassiveLayer method)

 	AbsBlockPassiveGenerator (class in tomopt.optimisation.data.passives)

 	AbsDetectorLayer (class in tomopt.volume.layer)

 	AbsDetectorLoss (class in tomopt.optimisation.loss.loss)

 	AbsIntClassifierFromX0 (class in tomopt.inference.volume)

 	AbsLayer (class in tomopt.volume.layer)

 	AbsMaterialClassLoss (class in tomopt.optimisation.loss.loss)

 	AbsMuonGenerator (class in tomopt.muon.generation)

 	AbsPassiveGenerator (class in tomopt.optimisation.data.passives)

 	AbsVolumeInferrer (class in tomopt.inference.volume)

 	
 	AbsVolumeWrapper (class in tomopt.optimisation.wrapper.volume_wrapper)

 	AbsX0Inferrer (class in tomopt.inference.volume)

 	add_scatters() (tomopt.inference.volume.AbsIntClassifierFromX0 method)

 	(tomopt.inference.volume.AbsVolumeInferrer method)

 	(tomopt.inference.volume.DenseBlockClassifierFromX0s method)

 	append_hits() (tomopt.muon.muon_batch.MuonBatch method)

 	ArbVolumeWrapper (class in tomopt.optimisation.wrapper.volume_wrapper)

 	assign_budget() (tomopt.volume.heatmap.DetectorHeatMap method)

 	(tomopt.volume.layer.AbsDetectorLayer method)

 	(tomopt.volume.layer.PanelDetectorLayer method)

 	(tomopt.volume.panel.DetectorPanel method)

 	(tomopt.volume.volume.Volume method)

 	avg_1d() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

 	avg_3d() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

 	avg_layers() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

B

 	
 	below_gen_hits (tomopt.inference.scattering.ScatterBatch property)

 	below_hit_effs (tomopt.inference.scattering.ScatterBatch property)

 	below_hit_uncs (tomopt.inference.scattering.ScatterBatch property)

 	
 	below_hits (tomopt.inference.scattering.ScatterBatch property)

 	BlockPresentPassiveGenerator (class in tomopt.optimisation.data.passives)

 	build_xyz_edges() (tomopt.volume.volume.Volume method)

C

 	
 	Callback (class in tomopt.optimisation.callbacks.callback)

 	cat_palette (tomopt.optimisation.callbacks.monitors.MetricLogger attribute)

 	cb_savepath (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	cbs (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	check_mu_batch() (tomopt.optimisation.callbacks.data_callbacks.MuonResampler static method)

 	check_warmups() (tomopt.optimisation.callbacks.warmup_callbacks.PostWarmupCallback method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.WarmupCallback method)

 	clamp_params() (tomopt.volume.heatmap.DetectorHeatMap method)

 	(tomopt.volume.panel.DetectorPanel method)

 	class_to_x0preds() (in module tomopt.utils)

 	compare_init_optimised_2() (in module tomopt.benchmarks.ladle_furnace.plotting)

 	compare_init_to_optimised() (in module tomopt.benchmarks.ladle_furnace.plotting)

 	
 	compare_optimised_to_baselines() (in module tomopt.benchmarks.ladle_furnace.plotting)

 	compare_raw_init_to_bias_corrected_init() (in module tomopt.benchmarks.ladle_furnace.plotting)

 	compute_efficiency() (tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer method)

 	(tomopt.inference.volume.AbsIntClassifierFromX0 method)

 	(tomopt.inference.volume.AbsVolumeInferrer method)

 	(tomopt.inference.volume.DenseBlockClassifierFromX0s method)

 	(tomopt.inference.volume.PanelX0Inferrer method)

 	conform_detector() (tomopt.volume.layer.AbsDetectorLayer method)

 	(tomopt.volume.layer.PanelDetectorLayer method)

 	copy() (tomopt.muon.muon_batch.MuonBatch method)

 	CostCoefWarmup (class in tomopt.optimisation.callbacks.warmup_callbacks)

 	cyclic_cbs (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	CyclicCallback (class in tomopt.optimisation.callbacks.cyclic_callbacks)

D

 	
 	DenseBlockClassifierFromX0s (class in tomopt.inference.volume)

 	DetectorHeatMap (class in tomopt.volume.heatmap)

 	DetectorPanel (class in tomopt.volume.panel)

 	device (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	(tomopt.volume.volume.Volume property)

 	dphi (tomopt.inference.scattering.ScatterBatch property)

 	dphi_unc (tomopt.inference.scattering.ScatterBatch property)

 	draw() (tomopt.volume.volume.Volume method)

 	
 	dtheta (tomopt.inference.scattering.ScatterBatch property)

 	dtheta() (tomopt.muon.muon_batch.MuonBatch method)

 	dtheta_unc (tomopt.inference.scattering.ScatterBatch property)

 	dtheta_x() (tomopt.muon.muon_batch.MuonBatch method)

 	dtheta_xy (tomopt.inference.scattering.ScatterBatch property)

 	dtheta_xy_unc (tomopt.inference.scattering.ScatterBatch property)

 	dtheta_y() (tomopt.muon.muon_batch.MuonBatch method)

 	dxy (tomopt.inference.scattering.ScatterBatch property)

 	dxy_unc (tomopt.inference.scattering.ScatterBatch property)

E

 	
 	E_0 (tomopt.muon.generation.MuonGenerator2016 attribute)

 	E_c (tomopt.muon.generation.MuonGenerator2016 attribute)

 	edge_det() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

 	EdgeDetLadleFurnaceFillLevelInferrer (class in tomopt.benchmarks.ladle_furnace.inference)

 	
 	epinv (tomopt.muon.generation.MuonGenerator2016 attribute)

 	epoch (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	epoch_bar (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	EpochSave (class in tomopt.optimisation.callbacks.opt_callbacks)

 	EvalMetric (class in tomopt.optimisation.callbacks.eval_metric)

F

 	
 	filter_muons() (tomopt.muon.muon_batch.MuonBatch method)

 	fit() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	FitParams (class in tomopt.optimisation.wrapper.volume_wrapper)

 	flux() (tomopt.muon.generation.AbsMuonGenerator method)

 	(tomopt.muon.generation.MuonGenerator2015 method)

 	(tomopt.muon.generation.MuonGenerator2016 method)

 	forward() (tomopt.optimisation.loss.loss.AbsDetectorLoss method)

 	(tomopt.volume.layer.AbsDetectorLayer method)

 	(tomopt.volume.layer.AbsLayer method)

 	(tomopt.volume.layer.PanelDetectorLayer method)

 	(tomopt.volume.layer.PassiveLayer method)

 	(tomopt.volume.panel.DetectorPanel method)

 	(tomopt.volume.volume.Volume method)

 	
 	from_save() (tomopt.optimisation.wrapper.volume_wrapper.ArbVolumeWrapper class method)

 	(tomopt.optimisation.wrapper.volume_wrapper.HeatMapVolumeWrapper class method)

 	(tomopt.optimisation.wrapper.volume_wrapper.PanelVolumeWrapper class method)

 	from_volume() (tomopt.muon.generation.AbsMuonGenerator class method)

G

 	
 	gauss_1d() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

 	gauss_3d() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

 	gen_hits (tomopt.inference.scattering.ScatterBatch property)

 	generate() (tomopt.optimisation.data.passives.AbsPassiveGenerator method)

 	generate_set() (tomopt.muon.generation.AbsMuonGenerator method)

 	GenScatterBatch (class in tomopt.inference.scattering)

 	get_baseline_detector_1() (in module tomopt.benchmarks.ladle_furnace.volume)

 	get_baseline_detector_2() (in module tomopt.benchmarks.ladle_furnace.volume)

 	get_cost() (tomopt.volume.heatmap.DetectorHeatMap method)

 	(tomopt.volume.layer.AbsDetectorLayer method)

 	(tomopt.volume.layer.PanelDetectorLayer method)

 	(tomopt.volume.panel.DetectorPanel method)

 	(tomopt.volume.volume.Volume method)

 	get_data() (tomopt.optimisation.data.passives.AbsPassiveGenerator method)

 	get_detectors() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	(tomopt.volume.volume.Volume method)

 	get_device() (tomopt.volume.layer.PanelDetectorLayer static method)

 	get_efficiency() (tomopt.volume.heatmap.DetectorHeatMap method)

 	(tomopt.volume.panel.DetectorPanel method)

 	(tomopt.volume.panel.SigmoidDetectorPanel method)

 	get_gauss() (tomopt.volume.panel.DetectorPanel method)

 	get_hits() (tomopt.muon.muon_batch.MuonBatch method)

 	(tomopt.volume.heatmap.DetectorHeatMap method)

 	(tomopt.volume.panel.DetectorPanel method)

 	get_initial_detector() (in module tomopt.benchmarks.ladle_furnace.volume)

 	get_loss_history() (tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	get_lw_z_size() (tomopt.volume.layer.AbsLayer method)

 	
 	get_metric() (tomopt.optimisation.callbacks.eval_metric.EvalMetric method)

 	get_muon_trajectory() (tomopt.inference.scattering.ScatterBatch static method)

 	get_opt_lr() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	get_opt_mom() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	get_panel_zorder() (tomopt.volume.layer.PanelDetectorLayer method)

 	get_param_count() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	get_passive_z_range() (tomopt.volume.volume.Volume method)

 	get_passives() (tomopt.volume.volume.Volume method)

 	get_prediction() (tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer method)

 	(tomopt.inference.volume.AbsIntClassifierFromX0 method)

 	(tomopt.inference.volume.AbsVolumeInferrer method)

 	(tomopt.inference.volume.AbsX0Inferrer method)

 	(tomopt.inference.volume.DenseBlockClassifierFromX0s method)

 	get_preds() (tomopt.optimisation.callbacks.pred_callbacks.PredHandler method)

 	get_rad_cube() (tomopt.volume.volume.Volume method)

 	get_record() (tomopt.optimisation.callbacks.diagnostic_callbacks.ScatterRecord method)

 	get_resolution() (tomopt.volume.heatmap.DetectorHeatMap method)

 	(tomopt.volume.panel.DetectorPanel method)

 	(tomopt.volume.panel.SigmoidDetectorPanel method)

 	get_results() (tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	get_scaled_xy_span() (tomopt.volume.panel.DetectorPanel method)

 	get_scatter_mask() (tomopt.inference.scattering.ScatterBatch method)

 	get_small_walls_volume() (in module tomopt.benchmarks.small_walls.volume)

 	get_small_walls_volume_wrapper() (in module tomopt.benchmarks.small_walls.volume)

 	get_xy_mask() (tomopt.muon.muon_batch.MuonBatch method)

 	(tomopt.volume.heatmap.DetectorHeatMap method)

 	(tomopt.volume.panel.DetectorPanel method)

H

 	
 	h (tomopt.volume.volume.Volume property)

 	h_mid (tomopt.optimisation.callbacks.monitors.MetricLogger attribute)

 	HeatMapGif (class in tomopt.optimisation.callbacks.heatmap_gif)

 	HeatMapVolumeWrapper (class in tomopt.optimisation.wrapper.volume_wrapper)

 	
 	hit_effs (tomopt.inference.scattering.ScatterBatch property)

 	hit_uncs (tomopt.inference.scattering.ScatterBatch property)

 	HitRecord (class in tomopt.optimisation.callbacks.diagnostic_callbacks)

 	hits (tomopt.inference.scattering.ScatterBatch property)

I

 	
 	I_0 (tomopt.muon.generation.MuonGenerator2016 attribute)

 	
 	integer_class_loss() (in module tomopt.optimisation.loss.sub_losses)

J

 	
 	jacobian() (in module tomopt.utils)

L

 	
 	LadleFurnaceIntClassLoss (class in tomopt.benchmarks.ladle_furnace.loss)

 	LadleFurnacePassiveGenerator (class in tomopt.benchmarks.ladle_furnace.data)

 	laplacian_1d() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer method)

 	lbl_col (tomopt.optimisation.callbacks.monitors.MetricLogger attribute)

 	lbl_sz (tomopt.optimisation.callbacks.monitors.MetricLogger attribute)

 	leg_sz (tomopt.optimisation.callbacks.monitors.MetricLogger attribute)

 	
 	LinearCorrectionCallback (class in tomopt.benchmarks.ladle_furnace.inference)

 	load() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	load_rad_length() (tomopt.volume.layer.PassiveLayer method)

 	(tomopt.volume.volume.Volume method)

 	lookup_passive_xyz_coords() (tomopt.volume.volume.Volume method)

 	loss_val (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	lw (tomopt.volume.volume.Volume property)

M

 	
 	max_div_min() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

 	max_sub_min() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

 	mean_loss (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	metric_cbs (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	metric_log (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	MetricLogger (class in tomopt.optimisation.callbacks.monitors)

 	
 module

 	tomopt.benchmarks.ladle_furnace.data

 	tomopt.benchmarks.ladle_furnace.inference

 	tomopt.benchmarks.ladle_furnace.loss

 	tomopt.benchmarks.ladle_furnace.plotting

 	tomopt.benchmarks.ladle_furnace.volume

 	tomopt.benchmarks.small_walls.data

 	tomopt.benchmarks.small_walls.volume

 	tomopt.benchmarks.u_lorry.data

 	tomopt.core

 	tomopt.inference.scattering

 	tomopt.inference.volume

 	tomopt.muon.generation

 	tomopt.muon.muon_batch

 	tomopt.optimisation.callbacks.callback

 	tomopt.optimisation.callbacks.cyclic_callbacks

 	tomopt.optimisation.callbacks.data_callbacks

 	tomopt.optimisation.callbacks.detector_callbacks

 	tomopt.optimisation.callbacks.diagnostic_callbacks

 	tomopt.optimisation.callbacks.eval_metric

 	tomopt.optimisation.callbacks.grad_callbacks

 	tomopt.optimisation.callbacks.heatmap_gif

 	tomopt.optimisation.callbacks.monitors

 	tomopt.optimisation.callbacks.opt_callbacks

 	tomopt.optimisation.callbacks.pred_callbacks

 	tomopt.optimisation.callbacks.warmup_callbacks

 	tomopt.optimisation.data.passives

 	tomopt.optimisation.loss.loss

 	tomopt.optimisation.loss.sub_losses

 	tomopt.optimisation.wrapper.volume_wrapper

 	tomopt.plotting.appearance

 	tomopt.plotting.diagnostics

 	tomopt.plotting.predictions

 	tomopt.utils

 	tomopt.version

 	tomopt.volume.heatmap

 	tomopt.volume.layer

 	tomopt.volume.panel

 	tomopt.volume.scatter_model

 	tomopt.volume.volume

 	
 	mom (tomopt.muon.muon_batch.MuonBatch property)

 	mu (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	mu_abs2idx() (tomopt.volume.layer.PassiveLayer method)

 	mu_bs (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	muon_efficiency (tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer property)

 	(tomopt.inference.volume.AbsX0Inferrer property)

 	muon_mom (tomopt.inference.volume.AbsX0Inferrer property)

 	muon_mom_unc (tomopt.inference.volume.AbsX0Inferrer property)

 	muon_poca_xyz (tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer property)

 	(tomopt.inference.volume.AbsX0Inferrer property)

 	muon_poca_xyz_unc (tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer property)

 	(tomopt.inference.volume.AbsX0Inferrer property)

 	muon_probs_per_voxel_zxy (tomopt.inference.volume.AbsX0Inferrer property)

 	muon_theta_in (tomopt.inference.volume.AbsX0Inferrer property)

 	muon_theta_in_unc (tomopt.inference.volume.AbsX0Inferrer property)

 	muon_theta_out (tomopt.inference.volume.AbsX0Inferrer property)

 	muon_theta_out_unc (tomopt.inference.volume.AbsX0Inferrer property)

 	muon_total_scatter (tomopt.inference.volume.AbsX0Inferrer property)

 	muon_total_scatter_unc (tomopt.inference.volume.AbsX0Inferrer property)

 	MuonBatch (class in tomopt.muon.muon_batch)

 	MuonGenerator2015 (class in tomopt.muon.generation)

 	MuonGenerator2016 (class in tomopt.muon.generation)

 	MuonResampler (class in tomopt.optimisation.callbacks.data_callbacks)

 	muons (tomopt.muon.muon_batch.MuonBatch property)

N

 	
 	N (tomopt.muon.generation.MuonGenerator2016 attribute)

 	n (tomopt.muon.generation.MuonGenerator2016 attribute)

 	n_epochs (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	n_hits_above (tomopt.inference.scattering.ScatterBatch property)

 	n_hits_below (tomopt.inference.scattering.ScatterBatch property)

 	
 	n_mu (tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer property)

 	(tomopt.inference.volume.AbsX0Inferrer property)

 	n_mu_per_volume (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	negative() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

 	NoMoreNaNs (class in tomopt.optimisation.callbacks.grad_callbacks)

O

 	
 	on_backwards_begin() (tomopt.optimisation.callbacks.callback.Callback method)

 	on_backwards_end() (tomopt.benchmarks.ladle_furnace.inference.LinearCorrectionCallback method)

 	(tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.detector_callbacks.PanelUpdateLimiter method)

 	(tomopt.optimisation.callbacks.grad_callbacks.NoMoreNaNs method)

 	(tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.OptConfig method)

 	on_epoch_begin() (tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.detector_callbacks.SigmoidPanelSmoothnessSchedule method)

 	(tomopt.optimisation.callbacks.heatmap_gif.HeatMapGif method)

 	(tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.PostWarmupCallback method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.WarmupCallback method)

 	on_epoch_end() (tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	(tomopt.optimisation.callbacks.opt_callbacks.EpochSave method)

 	(tomopt.optimisation.callbacks.opt_callbacks.OneCycle method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.CostCoefWarmup method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.OptConfig method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.WarmupCallback method)

 	on_mu_batch_begin() (tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.data_callbacks.MuonResampler method)

 	on_mu_batch_end() (tomopt.optimisation.callbacks.callback.Callback method)

 	on_pred_begin() (tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.diagnostic_callbacks.ScatterRecord method)

 	(tomopt.optimisation.callbacks.pred_callbacks.PredHandler method)

 	on_pred_end() (tomopt.optimisation.callbacks.callback.Callback method)

 	on_scatter_end() (tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.diagnostic_callbacks.HitRecord method)

 	(tomopt.optimisation.callbacks.diagnostic_callbacks.ScatterRecord method)

 	on_step_end() (tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.detector_callbacks.PanelCentring method)

 	(tomopt.optimisation.callbacks.detector_callbacks.PanelUpdateLimiter method)

 	
 	on_train_begin() (tomopt.benchmarks.ladle_furnace.inference.LinearCorrectionCallback method)

 	(tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.detector_callbacks.SigmoidPanelSmoothnessSchedule method)

 	(tomopt.optimisation.callbacks.diagnostic_callbacks.ScatterRecord method)

 	(tomopt.optimisation.callbacks.eval_metric.EvalMetric method)

 	(tomopt.optimisation.callbacks.heatmap_gif.HeatMapGif method)

 	(tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.PostWarmupCallback method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.WarmupCallback method)

 	on_train_end() (tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.heatmap_gif.HeatMapGif method)

 	(tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	on_volume_batch_begin() (tomopt.benchmarks.ladle_furnace.inference.LinearCorrectionCallback method)

 	(tomopt.benchmarks.ladle_furnace.loss.SpreadRangeLoss method)

 	(tomopt.optimisation.callbacks.callback.Callback method)

 	on_volume_batch_end() (tomopt.benchmarks.ladle_furnace.loss.SpreadRangeLoss method)

 	(tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	on_volume_begin() (tomopt.optimisation.callbacks.callback.Callback method)

 	on_volume_end() (tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	(tomopt.optimisation.callbacks.warmup_callbacks.CostCoefWarmup method)

 	on_x0_pred_begin() (tomopt.optimisation.callbacks.callback.Callback method)

 	on_x0_pred_end() (tomopt.benchmarks.ladle_furnace.inference.LinearCorrectionCallback method)

 	(tomopt.benchmarks.ladle_furnace.loss.SpreadRangeLoss method)

 	(tomopt.optimisation.callbacks.callback.Callback method)

 	(tomopt.optimisation.callbacks.pred_callbacks.PredHandler method)

 	(tomopt.optimisation.callbacks.pred_callbacks.Save2HDF5PredHandler method)

 	(tomopt.optimisation.callbacks.pred_callbacks.VolumeTargetPredHandler method)

 	OneCycle (class in tomopt.optimisation.callbacks.opt_callbacks)

 	OptConfig (class in tomopt.optimisation.callbacks.warmup_callbacks)

 	opts (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper attribute)

P

 	
 	P1 (tomopt.muon.generation.MuonGenerator2015 attribute)

 	P2 (tomopt.muon.generation.MuonGenerator2015 attribute)

 	P3 (tomopt.muon.generation.MuonGenerator2015 attribute)

 	P4 (tomopt.muon.generation.MuonGenerator2015 attribute)

 	P5 (tomopt.muon.generation.MuonGenerator2015 attribute)

 	p_dim (tomopt.muon.muon_batch.MuonBatch attribute)

 	PanelCentring (class in tomopt.optimisation.callbacks.detector_callbacks)

 	PanelDetectorLayer (class in tomopt.volume.layer)

 	PanelMetricLogger (class in tomopt.optimisation.callbacks.monitors)

 	PanelUpdateLimiter (class in tomopt.optimisation.callbacks.detector_callbacks)

 	PanelVolumeWrapper (class in tomopt.optimisation.wrapper.volume_wrapper)

 	PanelX0Inferrer (class in tomopt.inference.volume)

 	passive_bar (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	passive_bs (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	passive_size (tomopt.volume.volume.Volume property)

 	PassiveLayer (class in tomopt.volume.layer)

 	PassiveYielder (class in tomopt.optimisation.data.passives)

 	ph_dim (tomopt.muon.muon_batch.MuonBatch attribute)

 	phi (tomopt.muon.muon_batch.MuonBatch property)

 	phi_from_theta_xy() (tomopt.muon.muon_batch.MuonBatch static method)

 	
 	phi_in (tomopt.inference.scattering.ScatterBatch property)

 	phi_in_unc (tomopt.inference.scattering.ScatterBatch property)

 	phi_out (tomopt.inference.scattering.ScatterBatch property)

 	phi_out_unc (tomopt.inference.scattering.ScatterBatch property)

 	plot_hit_density() (in module tomopt.plotting.diagnostics)

 	plot_map() (tomopt.volume.heatmap.DetectorHeatMap method)

 	plot_pred_true_x0() (in module tomopt.plotting.predictions)

 	plot_scatter() (tomopt.inference.scattering.ScatterBatch method)

 	plot_scatter_density() (in module tomopt.plotting.diagnostics)

 	poca_xyz (tomopt.inference.scattering.ScatterBatch property)

 	poca_xyz_unc (tomopt.inference.scattering.ScatterBatch property)

 	PocaZLadleFurnaceFillLevelInferrer (class in tomopt.benchmarks.ladle_furnace.inference)

 	PostWarmupCallback (class in tomopt.optimisation.callbacks.warmup_callbacks)

 	pred (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	pred_height (tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer property)

 	PredHandler (class in tomopt.optimisation.callbacks.pred_callbacks)

 	predict() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	prewit_1d() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer method)

 	print_losses() (tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	propagate_d() (tomopt.muon.muon_batch.MuonBatch method)

 	propagate_dz() (tomopt.muon.muon_batch.MuonBatch method)

R

 	
 	RandomBlockPassiveGenerator (class in tomopt.optimisation.data.passives)

 	reco_hits (tomopt.inference.scattering.ScatterBatch property)

 	reco_mom (tomopt.muon.muon_batch.MuonBatch property)

 	remove_ladle() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer static method)

 	remove_upwards_muons() (tomopt.muon.muon_batch.MuonBatch method)

 	
 	resample() (tomopt.optimisation.callbacks.data_callbacks.MuonResampler static method)

 	ridge_1d_0() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer method)

 	ridge_1d_2() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer method)

 	ridge_1d_4() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer method)

 	ridge_1d_8() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer method)

 	Rod (tomopt.muon.generation.MuonGenerator2016 attribute)

S

 	
 	save() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	Save2HDF5PredHandler (class in tomopt.optimisation.callbacks.pred_callbacks)

 	sb (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	scatter_and_propagate() (tomopt.volume.layer.PassiveLayer method)

 	scatter_dtheta_dphi() (tomopt.muon.muon_batch.MuonBatch method)

 	scatter_dtheta_xy() (tomopt.muon.muon_batch.MuonBatch method)

 	scatter_dxyz() (tomopt.muon.muon_batch.MuonBatch method)

 	ScatterBatch (class in tomopt.inference.scattering)

 	ScatterRecord (class in tomopt.optimisation.callbacks.diagnostic_callbacks)

 	schedule() (tomopt.optimisation.callbacks.opt_callbacks.OneCycle method)

 	set_opt_lr() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	set_opt_mom() (tomopt.optimisation.wrapper.volume_wrapper.AbsVolumeWrapper method)

 	
 	set_wrapper() (tomopt.optimisation.callbacks.callback.Callback method)

 	sig_model() (tomopt.volume.panel.SigmoidDetectorPanel method)

 	SigmoidDetectorPanel (class in tomopt.volume.panel)

 	SigmoidPanelSmoothnessSchedule (class in tomopt.optimisation.callbacks.detector_callbacks)

 	skip_opt_step (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	SmallWallsPassiveGenerator (class in tomopt.benchmarks.small_walls.data)

 	smooth (tomopt.benchmarks.ladle_furnace.inference.PocaZLadleFurnaceFillLevelInferrer property)

 	(tomopt.volume.panel.SigmoidDetectorPanel property)

 	snapshot_xyz() (tomopt.muon.muon_batch.MuonBatch method)

 	SpreadRangeLoss (class in tomopt.benchmarks.ladle_furnace.loss)

 	state (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	stop (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	style (tomopt.optimisation.callbacks.monitors.MetricLogger attribute)

T

 	
 	target (tomopt.volume.volume.Volume property)

 	th_dim (tomopt.muon.muon_batch.MuonBatch attribute)

 	theta (tomopt.muon.muon_batch.MuonBatch property)

 	theta_from_theta_xy() (tomopt.muon.muon_batch.MuonBatch static method)

 	theta_in (tomopt.inference.scattering.ScatterBatch property)

 	theta_in_unc (tomopt.inference.scattering.ScatterBatch property)

 	theta_msc (tomopt.inference.scattering.ScatterBatch property)

 	theta_msc_unc (tomopt.inference.scattering.ScatterBatch property)

 	theta_out (tomopt.inference.scattering.ScatterBatch property)

 	theta_out_unc (tomopt.inference.scattering.ScatterBatch property)

 	theta_x (tomopt.muon.muon_batch.MuonBatch property)

 	theta_x_from_theta_phi() (tomopt.muon.muon_batch.MuonBatch static method)

 	theta_xy (tomopt.muon.muon_batch.MuonBatch property)

 	theta_xy_in (tomopt.inference.scattering.ScatterBatch property)

 	theta_xy_in_unc (tomopt.inference.scattering.ScatterBatch property)

 	theta_xy_out (tomopt.inference.scattering.ScatterBatch property)

 	theta_xy_out_unc (tomopt.inference.scattering.ScatterBatch property)

 	theta_y (tomopt.muon.muon_batch.MuonBatch property)

 	theta_y_from_theta_phi() (tomopt.muon.muon_batch.MuonBatch static method)

 	tk_col (tomopt.optimisation.callbacks.monitors.MetricLogger attribute)

 	tk_sz (tomopt.optimisation.callbacks.monitors.MetricLogger attribute)

 	
 tomopt.benchmarks.ladle_furnace.data

 	module

 	
 tomopt.benchmarks.ladle_furnace.inference

 	module

 	
 tomopt.benchmarks.ladle_furnace.loss

 	module

 	
 tomopt.benchmarks.ladle_furnace.plotting

 	module

 	
 tomopt.benchmarks.ladle_furnace.volume

 	module

 	
 tomopt.benchmarks.small_walls.data

 	module

 	
 tomopt.benchmarks.small_walls.volume

 	module

 	
 tomopt.benchmarks.u_lorry.data

 	module

 	
 tomopt.core

 	module

 	
 tomopt.inference.scattering

 	module

 	
 tomopt.inference.volume

 	module

 	
 tomopt.muon.generation

 	module

 	
 tomopt.muon.muon_batch

 	module

 	
 tomopt.optimisation.callbacks.callback

 	module

 	
 tomopt.optimisation.callbacks.cyclic_callbacks

 	module

 	
 tomopt.optimisation.callbacks.data_callbacks

 	module

 	
 	
 tomopt.optimisation.callbacks.detector_callbacks

 	module

 	
 tomopt.optimisation.callbacks.diagnostic_callbacks

 	module

 	
 tomopt.optimisation.callbacks.eval_metric

 	module

 	
 tomopt.optimisation.callbacks.grad_callbacks

 	module

 	
 tomopt.optimisation.callbacks.heatmap_gif

 	module

 	
 tomopt.optimisation.callbacks.monitors

 	module

 	
 tomopt.optimisation.callbacks.opt_callbacks

 	module

 	
 tomopt.optimisation.callbacks.pred_callbacks

 	module

 	
 tomopt.optimisation.callbacks.warmup_callbacks

 	module

 	
 tomopt.optimisation.data.passives

 	module

 	
 tomopt.optimisation.loss.loss

 	module

 	
 tomopt.optimisation.loss.sub_losses

 	module

 	
 tomopt.optimisation.wrapper.volume_wrapper

 	module

 	
 tomopt.plotting.appearance

 	module

 	
 tomopt.plotting.diagnostics

 	module

 	
 tomopt.plotting.predictions

 	module

 	
 tomopt.utils

 	module

 	
 tomopt.version

 	module

 	
 tomopt.volume.heatmap

 	module

 	
 tomopt.volume.layer

 	module

 	
 tomopt.volume.panel

 	module

 	
 tomopt.volume.scatter_model

 	module

 	
 tomopt.volume.volume

 	module

 	total_scatter (tomopt.inference.scattering.ScatterBatch property)

 	total_scatter_unc (tomopt.inference.scattering.ScatterBatch property)

 	track_in (tomopt.inference.scattering.ScatterBatch property)

 	track_out (tomopt.inference.scattering.ScatterBatch property)

 	track_start_in (tomopt.inference.scattering.ScatterBatch property)

 	track_start_out (tomopt.inference.scattering.ScatterBatch property)

 	trn_passives (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	tst_passives (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

U

 	
 	ULorryPassiveGenerator (class in tomopt.benchmarks.u_lorry.data)

 	update_plot() (tomopt.optimisation.callbacks.monitors.MetricLogger method)

 	(tomopt.optimisation.callbacks.monitors.PanelMetricLogger method)

 	
 	upwards_muons (tomopt.muon.muon_batch.MuonBatch property)

V

 	
 	val_passives (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	Volume (class in tomopt.volume.volume)

 	volume_id (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	volume_inferrer (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	VolumeClassLoss (class in tomopt.optimisation.loss.loss)

 	VolumeIntClassLoss (class in tomopt.optimisation.loss.loss)

 	
 	VolumeMSELoss (class in tomopt.optimisation.loss.loss)

 	VolumeTargetPredHandler (class in tomopt.optimisation.callbacks.pred_callbacks)

 	vox_zxy_x0_pred_uncs (tomopt.inference.volume.AbsX0Inferrer property)

 	vox_zxy_x0_preds (tomopt.inference.volume.AbsX0Inferrer property)

 	VoxelClassLoss (class in tomopt.optimisation.loss.loss)

 	VoxelPassiveGenerator (class in tomopt.optimisation.data.passives)

 	VoxelX0Loss (class in tomopt.optimisation.loss.loss)

W

 	
 	w_mid (tomopt.optimisation.callbacks.monitors.MetricLogger attribute)

 	warmup_cbs (tomopt.optimisation.wrapper.volume_wrapper.FitParams attribute)

 	
 	WarmupCallback (class in tomopt.optimisation.callbacks.warmup_callbacks)

 	wrapper (tomopt.optimisation.callbacks.callback.Callback attribute)

X

 	
 	x (tomopt.muon.muon_batch.MuonBatch property)

 	(tomopt.volume.heatmap.DetectorHeatMap property)

 	(tomopt.volume.panel.DetectorPanel property)

 	x02probs() (tomopt.benchmarks.ladle_furnace.inference.EdgeDetLadleFurnaceFillLevelInferrer method)

 	(tomopt.inference.volume.AbsIntClassifierFromX0 method)

 	x0_from_mixture() (in module tomopt.utils)

 	x0_from_scatters() (tomopt.inference.volume.AbsX0Inferrer static method)

 	x0targs_to_classtargs() (in module tomopt.utils)

 	x_dim (tomopt.muon.muon_batch.MuonBatch attribute)

 	
 	xy (tomopt.muon.muon_batch.MuonBatch property)

 	xyz (tomopt.muon.muon_batch.MuonBatch property)

 	xyz_centres (tomopt.volume.volume.Volume property)

 	xyz_edges (tomopt.volume.volume.Volume property)

 	xyz_hist (tomopt.muon.muon_batch.MuonBatch property)

 	xyz_in (tomopt.inference.scattering.ScatterBatch property)

 	xyz_in_unc (tomopt.inference.scattering.ScatterBatch property)

 	xyz_out (tomopt.inference.scattering.ScatterBatch property)

 	xyz_out_unc (tomopt.inference.scattering.ScatterBatch property)

Y

 	
 	y (tomopt.muon.muon_batch.MuonBatch property)

 	(tomopt.volume.heatmap.DetectorHeatMap property)

 	(tomopt.volume.panel.DetectorPanel property)

 	
 	y_dim (tomopt.muon.muon_batch.MuonBatch attribute)

 	yield_zordered_panels() (tomopt.volume.layer.PanelDetectorLayer method)

Z

 	
 	z (tomopt.muon.muon_batch.MuonBatch property)

 	
 	z_dim (tomopt.muon.muon_batch.MuonBatch attribute)

 This repo provides a library for the differential optimisation of scattering muon tomography systems. For an overview, please read our first publication here [https://arxiv.org/abs/2309.14027].

As a disclaimer, this is a library designed to be extended by users for their specific tasks: e.g. passive volume definition, inference methods, and loss functions. Additionally, optimisation in TomOpt can be unstable, and requires careful tuning by users. This is to say that it is not a polished product for the general public, but rather fellow researchers in the field of optimisation and muon tomography.

If you are interested in using this library seriously, please contact us; we would love to here if you have a specific use-case you wish to work on.

Overview

The TomOpt library is designed to optimise the design of a muon tomography system. The detector system is defined by a set of parameters, which are used to define the geometry of the detectors. The optimisation is performed by minimising a loss function, which is defined by the user. The loss function is evaluated by simulating the muon scattering process through the detector system and passive volumes. The information recorded by the detectors is then passed through an inference system to arrive at a set of task-specific parameters. These are then compared to the ground truth, and the loss is calculated. The gradient of the loss with respect to the detector parameters is then used to update the detector parameters.

The TomOpt library is designed to be modular, and to allow for the easy addition of new inference systems, loss functions, and passive volume definitions. The library is also designed to be easily extensible to new optimisation algorithms, and to allow for the easy addition of new constraints on the detector parameters.

TomOpt consists of several submodules:

	benchmarks: and ongoing collection of concrete implementations and task-specific extensions that are used to test the library on real-world problems.

	inference: provides classes that infer muon-trajectories from detector data, and infer properties of passive volumes from muon-trajectories.

	muon: provides classes for handling muon batches, and generating muons from literature flux-distributions

	optimisation: provides classes for handling the optimisation of detector parameters, and an extensive callback system to modify the optimisation process.

	plotting: various plotting utilities for visualising the detector system, the optimisation process, and results

	volume: contains classes for defining passive volumes and detector systems

	core: core objects used by all parts of the code

	utils: various utilities used throughout the codebase

tomopt

	tomopt package

 _static/imgs/authors/max.jpeg

_static/imgs/authors/maxlamparth.png

_static/imgs/authors/picture_andrea_giammanco_tokyo_2018.png

_static/imgs/authors/pietro.png

nav.xhtml

 Table of Contents

 		
 TomOpt: Differential Muon Tomography Optimisation

 		
 Installation

 		
 As a dependency

 		
 For development

 		
 Examples

 		
 Running notebooks in a remote cluster

 		
 External repos

 		
 Authors

 		
 tomopt package

 		
 Subpackages

 		
 tomopt.benchmarks package

 		
 tomopt.inference package

 		
 tomopt.muon package

 		
 tomopt.optimisation package

 		
 tomopt.plotting package

 		
 tomopt.volume package

 		
 Submodules

 		
 tomopt.core module

 		
 tomopt.utils module

 		
 class_to_x0preds()

 		
 jacobian()

 		
 x0_from_mixture()

 		
 x0targs_to_classtargs()

 		
 tomopt.version module

 		
 tomopt.muon package

 		
 Submodules

 		
 tomopt.muon.generation module

 		
 AbsMuonGenerator

 		
 MuonGenerator2015

 		
 MuonGenerator2016

 		
 tomopt.muon.muon_batch module

 		
 MuonBatch

 		
 tomopt.volume package

 		
 Submodules

 		
 tomopt.volume.heatmap module

 		
 DetectorHeatMap

 		
 tomopt.volume.layer module

 		
 AbsDetectorLayer

 		
 AbsLayer

 		
 PanelDetectorLayer

 		
 PassiveLayer

 		
 tomopt.volume.panel module

 		
 DetectorPanel

 		
 SigmoidDetectorPanel

 		
 tomopt.volume.scatter_model module

 		
 tomopt.volume.volume module

 		
 Volume

 		
 tomopt.inference package

 		
 Submodules

 		
 tomopt.inference.scattering module

 		
 GenScatterBatch

 		
 ScatterBatch

 		
 tomopt.inference.volume module

 		
 AbsIntClassifierFromX0

 		
 AbsVolumeInferrer

 		
 AbsX0Inferrer

 		
 DenseBlockClassifierFromX0s

 		
 PanelX0Inferrer

 		
 tomopt.optimisation package

 		
 Subpackages

 		
 tomopt.optimisation.callbacks package

 		
 tomopt.optimisation.data package

 		
 tomopt.optimisation.loss package

 		
 tomopt.optimisation.wrapper package

 		
 tomopt.plotting package

 		
 Submodules

 		
 tomopt.plotting.appearance module

 		
 tomopt.plotting.diagnostics module

 		
 plot_hit_density()

 		
 plot_scatter_density()

 		
 tomopt.plotting.predictions module

 		
 plot_pred_true_x0()

 		
 tomopt.benchmarks package

 		
 Subpackages

 		
 tomopt.benchmarks.ladle_furnace package

 		
 tomopt.benchmarks.small_walls package

 		
 tomopt.benchmarks.u_lorry package

_static/minus.png

_static/plus.png

_static/file.png

_static/imgs/modules.png

_static/imgs/authors/giles.png

_static/imgs/layout.png
Detector parameters

[—

detector-related
Continuous systematicuncertainties
model (GAN,
VAE, local
surrogates)

Nuisance
model

Propagation,

multiple Trajectory finder and
scattering, hit construction of density map
generation

Figure 1: Conceptual layout of an optimization pipeline for a muon radiography ap-
paratus. Modules within the dashed black box inform the validation of a continuous
model and are not part of the optimization flow.

_static/imgs/authors/hz.gif

